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Defect generation and deconfinement on corrugated topographies
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We investigate topography-driven generation of defects in liquid crystal films coating frozen surfaces of
spatially varying Gaussian curvature whose topology does not automatically require defects in the ground state.
We study in particular disclination-unbinding transitions with increasing aspect ratio for a surface shaped as a
Gaussian bump with a hexatic phase draped over it. The instability of a smooth ground state texture to the
generation of asingledefect is also discussed. Free boundary conditions for a single bump are considered as
well as periodic arrays of bumps. Finally, we argue that defects on a bump encircled by an aligning wall
undergo sharp deconfinement transitions as the aspect ratio of the surface is lowered.
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I. INTRODUCTION small deviations from flatness were investigated in RE3].
The melting of a two-dimensional crystal can occur con- " the present work, we investigate topography-driven

tinuously via two second order topological phase transitiongeneration of defects on simple frozen surfaces with spatially

characterized by the successive unbinding of dislocation an§2'¥ind Gaussian curvature whose topology doesauto-

disclination pairs. At low temperatures, dislocations are supMatically enforce their presence in the ground state. We
fudy in particular a two-dimensional “bump” with a Gauss-

ressed due to their large energy cost, but as the temperat ‘ X )
b 9 roy P Lfgn shape and dimension large compared to the particle spac-

g. For such a hilly landscape, flat at infinity, tpeometric

ontrol parameter is an aspect ratio given by the bump height
givided by its spatial extent. Consider a hexatic phase draped

ver such a bump. For small bumps, the ideal hexatic texture

comes their cost in elastic energy and dislocation unbindin
occurs to reduces the overall free energy of the sys$ierf].
The quasi-long-range order of the crystal is thus destroye

leading to a hexatic phase that still preserves quaSI-Ionq-S distorted, but there are no defects in the ground state. As

range orientational order. This phase can be characterized byo aqpect ratio is increased, we find that disclination pairs
a complex order parameter with sixfold symmetry. As theprogressively unbind aT=0 in a sequence of transitions

temperature is increased still further, an additionalyccyrring at critical values of the aspect ratio. The defects
d|sc!|ne}t|on-unb|n'd|ng transition occurs and the hexatic Or-subsequently position themselves to partially screen the
der is finally lost in an isotropic liquid phagé]. Gaussian curvature. For bumps embedded in surfaces of suf-
Experimental evidence for hexatic order and defectficiently small spatial extent, a second instability of the
mediated melting has been obtained in systems as diverse ggooth ground state needs to be considered. In this case, the
free standing liquid crystal filmp4], Langmuir-Blodgett sur-  energy stored in the field can be lowered by generating a
factant monolayerfs], two-dimensional magnetic bubble ar- singlepositive defect at the center of the bump. Novel effects
rays [6], electrons trapped on the surface of liquid heliumalso arise when the hilly surface is encircled by an aligning
[7-9], two-dimensional colloidal crystalgl0,11], and self- circular wall that ensures am2rotation of the orientational
assembled block copolymefs2]. order in the ground state. In this case, some of the positive
The unbinding of defects in the plane is entropically defects required to match the curvature of the boundary are
driven and at low temperature defects are tightly bound. Byconfined to a hemispherical cup centered on the bump, pro-
contrast, on surfaces with nonzdintegrategl Gaussian cur- vided the aspect ratia is larger than a critical valuer.
vature, excess defeatsustbe present even at very low tem- When« is lowered belowap, the positive defects originally
peratures. The theory of topological defects in orderedtrapped” in the hemispherical cup start undergoing a series
phases confined to frozen topographies with positive oof sharp “deconfinement transitions,” as they progressively
negative Gaussian curvature has been investigated previigrate to new equilibrium positions dictated by boundary
ously; see, e.g[13-15. As a general rule, regions of posi- conditions and the finite system size. We also suggest pos-
tive or negative curvaturevalleys, hills, or saddlgdead to  sible ground states for periodic arrays of bumps, like those
unpaired disclinations in the ground state, possibly screenean the bottom of an egg carton.
by clouds of dislocations. These clouds can in turn condense A natural arena to experimentally study the interplay be-
into grain boundaries at low temperature. The predictions ofween geometry and defects is provided by thin copolymer
recent studies of crystalline order on a spHd@ have been films on SiQ, patterned substratd23]. Flat space experi-
confirmed in elegant studies of colloidal particles packed orments by Segalmaset al. have already demonstrated that
the surface of water droplets in ¢il7]. Investigations of the spherical domains in block copolymer films form hexatic
physics of defects in curved spaces have also been carrigthasegd12].
out for fluctuating geometrie§l8-21. The dynamics of Our results for hexatics on frozen topographies also apply
hexatic order on fluctuating spherical interfaces was studietb other XY-like models, as might be appropriate for tilted
in Ref. [22]. Quenchedandomtopographies in the limit of surface-active molecules on curved substrates with interac-
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tions which favor alignment. The results are relevant as wel[14,29. More generally, the sum of the topological charges
to twofold nematic order on frozen topographies. In bothon any closed surface is equal to the integrated Gaussian
cases, we expect qualitatively similar defect-unbinding trancurvature.

sitions, although the equivalence becomes more exact in the By introducing a local bond-angle fielé(u), correspond-
one-Frank-constant approximatif@4]. Related results have ing to the angle between(u) and an arbitrary local refer-
been obtained recently for order on a tofR§]. Even though ence frame, we can rewrite the hexatic free energy intro-
theintegratedGaussian curvature vanishes, defects appear iduced in Eq(1) as

the ground state in the limit of fat torii, unless the number of L

degrees of freedom is very large. _ 8 _ _

The outline of this paper is as follows. In Sec. Il, the F= 2KAJ dA g(9,0 = A (950 = Ag), 2
relevant mathematical formalism is introduced and used to > = . .
highlight similarities and differences between defects on surVheredA=d<ug, g is the determinant of the metric tensor
faces of varying curvature and electrostatic charges in a norflass @NdAg is the spin connection whose curl is the Gaussian
uniform background charge distribution in flat space. As arfuUrvatureG(u) [26,28. The spin connection can be viewed
example, we calculate the distorted, but defect-free, groun@S & “geometric vector potential.” A free energy like E2)
state texture of a hexatic confined to a surface shaped as®s0 describes the charged Cooper pairs implicit in the Lon-
“Gaussian bump” for aspect ratios below the firstdon theory of a superconductgr well beldw. In the super-
disclination-unbinding instability. In Sec. IIl, we investigate conductor analogy, the Gaussian curvature plays the role of a
curvature-induced defect formation for an isolated bump andSPatially varying external magnetic field. For the problem
a periodic array of bumps. In Sec. IV, defect deconfinemengonsidered here, however, there are interesting new nonlinear
is discussed and in Sec. V various experimental issues r&ffécts associated with spatial variations in the metric.
lated to our analysis are highlighted along with some direc- A detailed analysis of the free energy of E@) for a
tions for future work. The development of the mathematicalPUmpy surface with free and circular boundary conditions is
formalism is largely relegated to appendixes. In Appendix APresented in Appendixes C and D. Here we only sketch the
the Green’s function for the covariant Laplacian is derivedMain steps and conclusions. The free energy can be readily
by means of conformal transformations. In Appendix B, weconverted into a Coulomb gas model by using the relation
introduce a geometri(_: potential whose source is the Gaussian ,yaﬂ(?a(aﬁa_ Ag) =s(u) - G(u) = n(u), (3)
curvature. In Appendix C, we present the general formula for
the energy of textures with defects in terms of the two func-wherey*# is the covariant antisymmetric tens@(u) is the
tions derived in Appendixes A and B. We thus explore theGaussian curvature, arglu)=(1/1g)SNqgdu-u;) is the
existence of position-dependent defect self-interactions thatisclination density witiN, defects of charge; at positions
arise from the varying Gaussian curvature. Finally, boundary;. The final result is an effective free energy whose basic
effects are discussed in Appendix D. degrees of freedom are the defects themsegl¥621:

Ka ) :
II. HEXATIC ORDER ON A SURFACE F= ? f dAf dA'n(u)I’(u,u”)n(u’), (4)
A. Electrostatic analogy where n(u) is defined in Eq.(3). The Green's function
The free energy for hexatic degrees of freedom embeddebd(u,u’) is calculatedsee Appendix Aby inverting the La-
in an arbitrary frozen surface can be written as placian defined on the surface

F=fa f dA D,n”(u)Dng(u), D Iuu’)=- (1> : (5)
2 A uu’

whereu={uy,u,} is a set of internal coordinates(u) is @ and we have suppressed for now defect core energy contri-
unit vector in the tangent plan®,, is the covariant deriva- butions which reflect the physics at microscopic length
tive with respect to the metric of the surface, ailis the  scales. Equatioi4) can be understood by analogy to two-
infinitesimal surface arefl8,19,21,2% The generalization dimensional electrostatics, with the Gaussian curvaB(re
to systems with g-fold symmetry is straightforward pro- (with sign reversegplaying the role of a nonuniform back-
vided that the one-Frank-constant approximation is used anground charge distribution and the topological defects ap-
the consequences of the uniaxial coupling negle¢®d.  pearing as pointlike sources with electrostatic charges equal
This choice of free energy implies that the minimal energyto their topological chargg;. As a result, the defects tend to
configuration will be given locally by neighboringu) vec-  position themselves so that the Gaussian curvature is
tors which differ only by parallel transport. The curvature of screened: the positive ones on peaks and valleys and the
the surface induces “frustration” in the texture. In fact, bynegative ones on the saddles of the surface. However, this
Gauss’ “theorema egregiuni27,28, tangent vectors parallel analogy does neglect position-dependent self-interactions
transported along a closed loop are rotated by an amou8Q], but since these are quadratic in the charge they are
equal to the Gaussian curvature integrated over the encloseggligible for hexatics. Hence positive disclinations of mini-
area. On a sphere, for example, the hexatic ground state ahal topological charge;=27/6 continue to be attracted to
ways has 12 excess disclinations as a result of this frustratiopositive curvaturgsee Appendix ¢
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FIG. 1. (Color onling (a) The vector fieldn is confined to a surface shaped as a Gaussmrilop view of (a) showing a schematic
representation of the positive and negative Gaussian curvature as a background “charge” distribution that switchesrgigdaie that,
according to the electrostatic analogy, a positivegative distribution of Gaussian curvature corresponds to negégpwsitive) topological
charge density.

More generally, we can considerfold symmetric order A ,=E,-d,E 4 [26,28. This leads to a vanishing radial com-
parameters with minimum charge defectsm#p. The case ponentA, and
p=1 corresponds to tilt order of absorbed molecules pnd
=2 describes two-dimension&2D) nematics. The casgs 1
=4 and p=6 describe tetradic and hexatic phases, respec- Ap=—T7—, (8)
tively [29]. Strictly speaking, Eq.1) describes only the cases Vi)
p=1 andp=2 in the one-Frank-constant approximati@4]. , , , )
Most of our discussion focuses on topography-driven transiwhere the important-dependent functioh(r) (see Fig. 2is
tions on a model surface shaped like a bell curve or “Gaussdefined by
ian bump”(see Fig. 1, but the same mathematical approach
can be readily carried over to study arbitrary surfaces of . a?r? r?
revolution that are topologically equivalent to the plane. Fur- =1+ 2 ex '
thermore, we do not expect the results of this analysis to 0
depend qualitatively on the azimuthal symmetry of the sur-
face, which is assumed purely for reasons of mathematical
convenience.

Points on our model surface embedded in three-
dimensional Euclidean space are specified by a three
dimensional vectoR(r, ¢) given by 6

-2
o

9

nd it is equal to the radial component of the diagonal metric
NSOrg,g

I1(r/rg)

r cos¢
R(r,¢) = rsing : (6)
h exp(- r?/2r)
wherer and ¢ are plane polar coordinates in tRg plane of 3¢

Fig. 1. It is useful to characterize the deviation of the bump
from a plane in terms of a dimensionless aspect ratio

h 1
(7) r/r0

0.5 1 1.5 2 2.5 3

5 L

SN

o

o

The two orthogonal tangent vectots=0R/dr and t,

=JR/d¢ can be normalized to define the vierbéanthonor- FIG. 2. Plot ofl(r/rg) as a function of the dimensionless radial
mal basis vectopsE, andE,, respectively. The components coordinater/r, for a=1,2,3,4. Thearrow is oriented in the direc-
of the spin connection introduced in E@) are given by tion of increasinge.
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I(r) O defect of chargeg=2 in this “rotating” system of coordi-
9a3=< 0 rz) (100 nates.
As an illustration, consider the projection on the plane of
Note that theg,, entry is equal to the flat space restdtin  the minimal energy texture of axY model(p=1) as shown
polar coordinates whilg,, =I(r) is modified in a way that in Fig. 3. The arrows represent the orientation of tilted mol-
depends orw but tends to the plane resudt, =1 for small  ecules on this surface in the one-Frank-constant approxima-

and larger, as illustrated in Fig. 2. tion. The field clearly displays strong frustration along a di-
The Gaussian curvature for the bump is readily foundrection determined by the choice of the constanin Eq.
from the eigenvalues of the second fundamental f{3dj, (14). If the bump is positioned within two very distant walls

o 22 ) pgrallel to they axis which 'impose tangential boyndqry con-
G.(r) = ae °< _f_) (11) ditions on tlhe molecular tilts, the “preferred” direction will
“ rai(r)? r2 be alongy.” The texture displayed in Fig. 3 can be inter-

i preted as resulting from embryonic pairs of defect dipoles
Note thata controls the order of magnitude &f(r) and that along the linex=0. The distortion energ§, of this ground
G(r) changes sign at=rq [see Fig. lb)]. The integrated state is given by
Gaussian curvaturAG(r) inside a cup of radius centered
on the bump is

1

l = - ﬁ —_ —_

AG(r)=27r( __), 12 Fo 2KAf dA (3,00~ A (9500 Ag).  (15)
VI(r)

which vanishes as— . Equation(12) also shows that the

positive Gaussian curvature enclosed within the radis This expression can be evaluated for an infinitely large sys-
(see Fig. 1 approaches 2 for a>1, half the integrated tem by using Eq(14) and the explicit form of the spin con-

Gaussian curvature of a sphere. nection derived in Sec. Il A, with the result
B. Defect-free texture = 11— \W 2
. L FO:WKAf dr[,é (16)
For small values of the aspect ratip the minimal energy 0 rI(r)

texture for the hexatic will be free of defects. The ground
state configuratioy(u) satisfies the differential equation
It follows from Eg. (16) that the ground state energy is a

D.D%0~D"A,=0, (13 monotonically increasing function of the aspect ratio, propor-
which results from minimizing the free energy in E@)  tional toa* for small . As we shall see, for large enough
with respect to the field(u) for fixed A,. When expressed in it can be energetically preferable to reduce this energy by

terms of the coordinates in E¢g), the solution of Eq(13)  introducing defect pairs into the texture. It is convenient to
reads rewrite Eq.(15) in terms of the Gaussian curvatuggr) and

the Green’s functiod’(u,u’) discussed in Appendix A26]
fo(u) == ¢ +c, (14)

wherec is an arbitrary constant. The smooth ground state |y casedistantwalls are present, the free solution of E@4) is
texture is thus obtained if the director forms an angle slightly modified to account for the new boundary conditions. This
6o(u)=—¢+c with respect to the spatially varying basis vec- is accomplished by the method of images or conformal transforma-
tor E,. Note that a solution of the forréiy(u)=c represents a tions[32].
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Ka result in terms of the original polar coordinates reads
F0=?fdAf dA'G(WI'(u,u”)G(u"). (17)
1
"N — 2 "2
This result is what one obtains by setting @H0 in Eq.(4). Tu,uy= A In{R(r)”+R(r")

The details of the mathematical derivation are relegated to
Appendix C. ’ - 2R(NNR(r')codp - ¢')] +c, (21

Although  this result correctly represents the ZE10°yhere the functiomR(r) can be thought of as a radial coor-

temperature limit of the vector model, corrections may be inate in the conformal plane resulting from adopting an
appropriate to describe the physics of ordered phases at ﬁni%othermal set of coordinatésee Appendix A

temperature. “Spin-wave” excitatiofise., quadratic fluctua-
tions of the order parameter about the ground state texture “dr’ ——

can be accounted for by integrating out the longitudinal fluc- R(r)=r exp(— J —[VI(r") - 1]),
tuations ¢’ (u) around the ground state configuratiég(u). rr

[Bl)élgg?ng 6=6o+ 6" in Eq.(2) and using Eq(3) we obtain andI(r) is the a-dependent function introduced in E).

The constantt depends on the physics at short distances,
1 L which is discussed in Appendix A.
F:FOJ'EKAfdA 0,0 gt (18 The Green’s function in Eq(21) corresponds to free
boundary conditions at infinity and preserves the cylindrical
The longitudinal variablé’ (u) appears only quadratically in symmetry of the metric. It differs from the familiar result in
F and the trace ove#’(u) can be explicitly performed with flat space by a nonlinear radial stretch corresponding to a
the result[33] smooth deformation of the bump into a flat disk. This
Green’s function determines an attractive interaction for the
JDB’ exp(—%fdA gaﬂaaer&ﬁ6/> =e L, (19 defect-dipole pair. However, the.Gaussia'n curvature of the
2 bump also generates a geometric potential that tries to pull
the disclination dipole apart. This geometric interaction
arises by combining cross terms betwestn) and G(u) in
K Eq. (4) with the position-dependent self-interactions derived
BFL= Cf dA=>, J dAf dA'G(U)T'(u,u")G(u’). in Appendix C. The resulting interactidf; between defects
and the Gaussian curvature takes the simple form

(22)

whereF_ is the Liouville action,

(20)
Ny
The first term in this expression is a constant proportional to - ( _ i) '
the fixed surface area of the frozen topography and will be Fo KAz alt Vi), 23

suppressed in what follows. The remaining term causes a
shift in the coupling constant appearing in Efj7) from K,  where the geometrical potentisl{u) is defined as
to K,=K,—kgT/127 [18,2]. This “entropic” correction to
the coupling constanK, at finite temperature also arises
when defects are present. V(u) = _JdA Gu”)l(u,u’). (24

The energy in Eq(17) represents an intrinsic, irreducible
energy cost of geometric frustration for textures without de-The minus sign in front of this geometric potential ensures
fects. As we shall see, defects can reduce this frustrationhat defects of topological charge between zero andade
However, for small values of the energy cost of this frus- attracted by regions of positive Gaussian curvaf@@. For
tration will still be lower than the core energies associatetjefects with a large topological chargea# 4, the sign of
with the creation of the unbound defects and the work necthe geometric interactioRg is reversed and defects of either
essary to tear them apart. sign are pushed away from the bump. This scenario does not
affect the geometry-driven defect formation discussed in this
paper that relies on disclinations whose charge is well below
47r. However, as a result of the position-dependent self-

A quantitative understanding of the energetics of defectsnteractions,Fg is no longer symmetric under the change
on a fixed topography is essential to calculate the critical~—q, as one would expect on the basis of the electrostatic
valugs) of the aspect ratio above which defect unbindinganalogy. The effect of this asymmetry is small for hexatic
becomes energetically favorable. The first step is to calculaterder but it increase for liquid crystals with-fold order
the Green’s functiod’(u,u’) that governs the “Coulombic” parameter, ap decreasegsee Ref.[30], and references
interaction among defects and between each defect and tlieereir).
Gaussian curvature. The inversion of the curved space La- Gauss’ law generalized to curved surfa¢sse Appendix
placian can be more easily accomplished by employing a s€) ensures that the geometric force experienced by a defect
of “isothermal coordinates,” such that the resulting Green'f chargeq with radial coordinate will be determined only
function reduces to the familiar logarithm of two- by the net curvature enclosed in a circle of radiwentered
dimensional electrostatics. As shown in Appendix A the finalon the top of the bump. The resulting “electric field” is radial

C. Energetics of defect pairs on a Gaussian bump
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derstood by applying a generalized Gauss’ law to the bump
to determine a force which is equal ta?2xr. The poten-

tial follows by integ@ting this force along the bump with the
length elementlry/I(r).

Although the force is independent of the aspect ratio, the
length element grows witlx (see Fig. 4, which makes the
pair more energetically bound for larger valuesaofA care-
ful calculation of these effectéincluding the contribution
| Rz (1) associated with the position-dependent self-energmseals

| that the geometric force still overcomes the binding interac-
: I tion for sufficiently large values od.
ar > An estimate of the critical value af for which the dipole
unbinds can be obtained by comparing the minimal free en-

FIG. 4. Effect of changing the aspect ratio of the bump on theergy of the smooth frustrated field arising from E#j7) with
work needed to pull apart two oppositely charged defects. Positivghe free energy in the presence of defects. The latter, as fol-
and negative defects are represented by open circles with their sidaws from Eq.(4), is composed of three contributions: the
printed. The line elements corresponding to the projected letigth jnteractions among the defects, the interaction between the
for the two aspect ratios are shown. defects and curvature as given by E2@), and the Gaussian

curvature self-interaction. The latter is equal to the minimal
as expected from electrostatics and is proportional to the grdree energy of the smooth frustrated field and is renormalized
dient of the geometric potential, which for a Gaussian bumpt finite temperature in the same wagssociated with the

takes the form(see Appendix B cutoff is a microscopic core enerdy, that we expect to be
. o independenbf the defect position on the bump, as long as
—_ ar’. _ the radius of curvature is much greater than any microscopic
V(r) = SLVIrT) = 1. (25 - o
P r length scalg.The remaining two contributions are not renor-

malized by thermally induced spin wave fluctuati¢fg]. As
For small values of the aspect ratiothe potential in Eq. shown in Appendix C, the difference in free energy of a
(25 can be approximated by defected texture described by Hd) relative to the defect-
free result Eq(17) can be written as

aze—rzlrg
V(r) = - . (26)

) S 1SS T ¢>+§q(1—&)v<r)
The resulting force is linear for smail(i.e., near the top of Ka 257 ol g T 4

2
the bump and decays likee™™ "0 for r>rq As the aspect £ Na
ratio « increases, the force generated by the curvature can + > in, (28)
overcome the attractive force binding the defect pair which Kaiz1

varies logarithmically for short distances. As a result, oppo-

sitely charged defects that were originally tightly bound canwhere we have assumed overall charge neutrality for the de-

be separated. fect configuration. The subscript i, indicates that a con-
This argument, however, neglects another complicatiorstant microscopic core radius has been absorbed in the

resulting from the curvature of the surface: as the aspect ratidefinition of the Green'’s function so that the argument of the

is increased, the Green’s functidi(u,u’) in Eq. (21) and logarithm in Eq.(21) becomes dimensionless, as in Eq.

hence the force binding the defects togethkso increases. (C21),

We Illustrate this point in Fig. 4 for the special case of a

positive defect pinned right on top of the bump and a nega- _ 1
tive one free to move downhill at Upon invoking Eqs(4) Talris ity y) =T(ri, it dy) + om Ina. (29)
and(21), the potential binding the pai¥/,;(r), can be writ-
ten down exactly as This microscopic cutoffa corresponds to a constant core
) 5 o o radius for each defect and it is of the order of the spacing
(r) = Kad r 2= _ Kaq ar’ Neery — between the microscopic degrees of freedom. The sum of
Vpalr(r) In + 2q Ec , [\l(r ) 1]- . . . .
27 a 2w J, v microscopic core energies in the fourth term of E®8)

27) needs to be fixed phenomenologically or from models that go
beyond simple elasticity theory34]. Note that both
The first term is the flat space Green’s function and we havéa(ri, ¢i.rj,¢;) andV(r) depend ona. If « becomes suffi-
added two disclination core energies. The last term repreciently large so that\F is less than zero, one or more dis-
sents a “curvature correction” that has the same functionatlination dipoles unbind in the hexatic phase at a sequence of
form of the geometric potential in Eg25), but it represents  critical valueSaci. The analogous defects XY-model tex-
a distinct contribution to the total free energy. As discussedures of tilted liquid crystal molecules would be +/- vortex
in Appendix B, the pair potential energ¥,;(r) can be un-  pairs.
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V{r/ry) ° V(0)

-0.5

r/ro 1 2 3 4 a 5
~ FIG. 5. Geometric potential(r/ro) as a function of the dimen- FIG. 6. Plot of the geometric potential evaluated at the center of
sionless ratio ofr andro for a=1, 2, 3, 4, 5. Note thatV(r)|. the bumpV/(0), for aspect ratios: between 0 and 5. The continuous
<|V(0)| for r=rq. The arrow points in the direction of increasing line is plotted using the exact form ®r) while the dashed line is
a. obtained from the lowx expansion given in Eq26).
I1l. CURVATURE-INDUCED DEFECT GENERATION AF(a) q2

£ |n<5> + q<1 - i)V(O) e (3p)
A. Onset of the defect-dipole instability Ka 27 a 47 Ka

If a dipole is created, say, along the liner, of zero  To estimate the critical value of the aspect ratio for which the
Gaussian curvature, the positive disclination will be pulledfirst dipole unbinds, let ~rq and solve fora. in Eq. (31).
toward the center by the positive curvature while the negaBecause a different choice for the core enefgycan be
tive one will be repelled into the region of negative curva-accounted for by rescaling the core saen Eg. (31), the

ture. condition for unbinding is

The net result is a reduction of the total free energy of the 2q .
order of the depth of the potential well since the logarithmic V(0)| > ——— In(—?) (32
binding energy is approximately constant compared to the (4m-0q) a

geometric potential. An approximate analytical treatment isyith
obtained by assuming that the positive defect sits right at the eIk
center of the bump and the negative one at a distance of the a’ = ag *mEKa, (33

order ofry. The validity of this approximation scheme can be If we know E./K, andr,/a, the critical aspect ratia, can

checked by numerically minimizing the energy with respect . optained from inspection of Fig. 6 wheve0) is plotted

to the position of the defects, as discussed in Sec. Il B. W%? a function ofw.

assume charge neutrality so that the two defects have equa . , . .
. . . The Taylor expansion o¥/(r) derived in Eq.(26) gives
and opposite topological charges of magnitagdé-or order V(0)~—-a?/4 to leading order ina. Inspection of Fig. 6

arameters with @-fold symmetry, the minimal topological . . L
P ® y Y ho'od shows that this approximation works sufficiently well even

charge isg=2m/p. The approximate free energy cost to gen- . . o
erate this defect pair then follows from Eqg5), (27), and for aspect ratios of order unity. Upon substituting #(0)

(28): into Eq. (32), we obtain an estimate of how, depends on
' ro/a’:
8q r 8q r A7E,
AF(e) @[ (1 q 2 | (_O)z—{l <_0>+_c]_
K 2n In a +V(r) | +q 1—57 V(0) ™ 4m-q) Na (4 -0q) "a Ka
q £ (34)
C
—q(l +E)V(r) + 2q2K—A. (30 Note that a critical heighh.=a.r, for defect unbinding is

predicted for fixedry/a’ with defect chargey=2=/p for all

integer values op. The validity of this approximate relation
The internal consistency of the formalism can be checked bjs tested in Sec. Il B.
investigating the limitr —a. As the negative defect ap- The continuum theory adopted here is valid in the limit
proaches the positive one at the center of the bump, we hawvg>a. If E, can be neglected compared kg, the defect-
V(a)=V(0) and the energy tends to the expected flat spacenbinding instability is triggered when the energy gain de-
result 2°E,. rived from letting the defects screen the Gaussian curvature

The equilibrium position of the negative defect turns out[approximately given by\V(0)] overcomes the work needed

to be forr equal to a few, so the terms containing(r) in to pull them apart a distance,. This work, of order
Eqg. (30) can be dropped as a first approximation becauség?/2w)In(ro/a), increases very slowly with large,/a,
V(r) decays exponentiallisee Fig. % hence the continuum approximation can be satisfied while
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It is useful to parametriz&F(«) in terms of the dimen-
sionless radial coordinates=r;/r,. The geometric potential
is defined in Eq(A9) as a function ofr;, V(r)=V (r/ry),

AF/Ka where

-0.15 &

V,(x) =~ f w dyy[\"l +a?yPexp-y)-1]. (39

X

In order to write the defect-defect interaction in terms of the
dimensionless radial coordinatg we introduce a new func-

tion R(r;) defined by

R(F) = L exgV(r)] = exp[\?a(ﬂﬂ _R(r) |
fo l'o r

0 o

X1 2.5

(36)
FIG. 7. Plot of AF/K, versusx, and x,, the positions of the
negative and positive defects, respeCtizvely. in unitsrgffor @ where Eq(A8) was used in the last step. We can now trans-
=1.2. A constant energy offset equal té~/2m)In(ro/a’) has been - = PR N I~
neglected. The metastable minimum xt=1.3r; and x,=0.2r, fﬁ:{?;:;gﬁ:\'/’éjl"l?r)] b)éelsgnzlri)ag?]gi();(;g)m favor of R(ry).
corresponds to an unbound pgsee Fig. 8)]. As « is decreased 9 Eq

further the energy barrier that separates this minimum from the Ny Ny
smooth texture solutiogcorresponding to; approachingk,) dis- _ . o N T AT
appears and the two opposite defects annihilate. Efl q.qua(r.,gé,,rj,qu) - E q|qu(ﬁ, ¢|,f,,¢1)

keeping the work finite. Note that the result does not depend + i% o In(@) (37)
on the size of the systeR because we assume overall dis- 2mio, a/’

clination charge neutrality and the assumption fRatr,. In

this limit, boundary effects can be ignored provided that theyyhere we have exploited charge neutrality and EZR2).

do not impose a topological constraint on the phase of thghe free energy minimized with respect to the positions of

order parameter. An aligning outer wall in a circular hexaticthe defects, milA\F/K,], can now be written, according to
sample, for example, would force the bond-angle field togq, (28), as
rotate by 2r, leading to six defects in the ground state even

in flat space. The interesting physics which results is ad-

dressed in Sec. IV. mln[

Ny
E] =@+, -3 qi2|n(§>, (39)

B. Numerical investigation of defect-unbinding transitions

where
The disclination-unbinding transitions can be investigated
more quantitatively by minimizing numericallyF(«) in Eq. 1 N . Ny q
(28) with respect to the positions of the defects. The aspecf(a) = min EE AT (i, Ty, ) + 21 Qi(l ‘Z) (r) |
J#I i=

ratio above whichAF(«) becomes negative corresponds to
the threshold valuey, (analogous to a first order transitjon (39
for which the singular field is energetically favored with re-
spect to the smooth texture of Fig. 3. We emphasize that thilote that in the second term in E@8) the core energy of
energy landscape can have two minima. The first occurgach defect has been absorbed in the modified core ratius
when two oppositely charged defects form a closely boundts defined in Eq(33). This generates an energy cost for
dipole (with separation of the order of the cutodff and  unbinding that can be overcomefifa) assumes sufficiently
hence annihilate each other leaving a smooth texture. Thiarge negative values. Hence it is sufficient to study numeri-
second minimum corresponds to an unbound (with sepa-  cally how AF(a) varies as a function of a single parameter,
ration of a fewrg) and it disappears when the geometrice.g.,ro/a’. As an illustration of this approach, we study ex-
force is too weak to overcome the binding force of the pair.plicitly the unbinding of one and two disclination pairs lead-
This scenario occurs for finite value of o characteristic of ing to the ground states represented schematically in Fig. 8.
the geometry of the substrate above which the formation of The smooth ground state becomes unstable to the forma-
an unbound dipole is possible, albeit energetically unfavoredion of one defect dipole first. The critical aspect ratio above
(see Fig. 7. which this scenario occurs can be determined with the aid of
As a is increased above,, the smooth-texture minimum Fig. 9, where the functiorf(«) introduced in Eq.(39) is
becomes metastable and the unbinding of a defect pair is th@otted as a function of the aspect ratio. From E8) we
most likely scenario. see thata, is determined by
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2 3 O 4 5 o
C-) @l@ 6 FIG. 10. Plot of f(a) versus the aspect ratia obtained by
! minimizing the two-dipole defect configuration represented sche-
(b) VI Ty matically in Fig. 8b). The second unbinding transition occurs when

f(ac,) is equal to {g?/ m)In(rga’). The valuea, is indicated by the

. . . dashed line forg/a’=10* andq=2#/6 (compare with Fig. 9
FIG. 8. The equilibrium defects positions are illustrated sche-

matically in the case of on@) and two(b) dipoles. We assume free
boundary conditions at infinity, as in Fig. 3, so that the effect of,,

image charges can be neglected. two-dipole instability” sets in is approximately equal to 3.6

for the same choice of parameters used in the single-pair
) case. Note that, in the presence of two dipoles, the energy
flag) = - q In(ﬁ) _ (40) cost arising from the second term in E88) is twice as large
1 because there are four defects rather than two. However, for
a=4.2, generating two dipoles becomes more energetically
Forro/a’=10* andq=27/6, we obtain a critical aspect ratio favored than a single dipolsee Fig. 11 The approach il-
1~3 2. As a comparison, the approximate condition dedustrated here can be used to calculate a cascade of defect-
rived in Eq.(32) givesa., ~ 3 when used in conjunction with unbinding instabilities at critical aspect ratiag involving
Fig. 6. The rougher estlmate in E@4) leads(for q=2#/6)  higher number of dipoles and their equmbrlum configura-
to a; ~2.6. This discrepancy is easily understood considertions in the ground state. Note that the unbinding eventually
ing that Eq.(34) was derived by means of a low-expan-  Stops since the integrated Gaussian curvature in the top cup
sion. cannot exceed2 We expect the qualitative features of our
The critical aspect ratia,_is too low for the two-dipole ~ @nalysis to be independent of the exact shape of the bumpy
defect configuration to become energetically favorable witrSubstrate although the specific values depend on the ge-
respect to the smooth ground state. Indeed, inspection of Fi@metry and the choice of the microscopic parameteand
10 reveals that the critical aspect ram for which the E FlnaIIy, we emphaS|ze that the curvature-induced unbind-
2 ing is similar to a first order transition and occurs for rather
or : : : : pronounced deviations from flathe§<., largea).

|
|
|
I
|
|
|
2 3 Qa1 4 E (¢

FIG. 9. Plot off(a) versus the aspect rati@ obtained by mini-

mizing over the single-dipole defect configuration represented sche 5 s 3 3 p 15 S 5 s
matically in Fig. 8a). As discussed in the text, the first unbinding
transition occurs When‘(ac) is equal to €?/2min(ry/a’). The FIG. 11. Plot ofAF(a)/K, versusa corresponding to a single

value aq is indicated by the dashed line faop/a’=10* and q dipole (continuous ling and two dipoles(dotted ling for ro/a’
=27/6. Note that no minimunicorresponding to an unbound pair =10 The critical aspect ratios, and ag, are indicated by dashed
exists fora less than Yapproximately; hence the curve cannot be lines. Note that the aspect ratio for which the two-dipole configu-
continued to the origirisee Fig. 7. ration becomes energetically favored occursdor 4.2.
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C. Single vortex instability | ( )| q ( R) a4

V(0)| > In - . 44
The unbinding of defect pairs may not be the most likely (q-4m) a

scenario if the size of the systeRiis sufficiently small. In Using the same method adopted to derive @d) we obtain

this case, the creation of a single vortex at the center of thg, astimate of how depends oR/a’ [compare with Eq.
bump may become energetically favorable for lower aspec634)]: S

ratios than required by the defect dipole instability. The
equation for the bond-angle fieki(u) for a single defect of >4 | R
chargeq at the center of the bump is given by s~ (47 - q) n a' )

(45)

The single vortex instability is reminiscent of vortex genera-
ol =L -1 417)  tion in rotating superfluid helium witkx playing the role of
27 the angular speef). For a volume of helium contained in a
cylindrical vessel of radiu®R and rotating uniformly with

where the bond angle is measured with respect to the rotatiljfs?or‘St""”t angular speed, the critical vallg above which
basis vectors corresponding to the polar coordinates diglefect generation occurs is given [86]

cussed in Sec. Il B. Upon substitutiry(¢) in Eq. (2) and K R
subtracting the free energ¥, corresponding to the defect- ch ~— In(—), (46)
free texture we obtain 27R a

whereK=2m/my, is the magnitude of the quantum of cir-
AF(a) _ q? R(R) q ,E¢ culation anda the core radiué.Note thatQCl decreases &R
K—A T A In Ta +q 1‘; V(0) +q K_A’ increases, unlikexs which diverges logarithmically. Thus,
the single defect instability studied here is a finite size effect.
(42) In contrast, the disclination unbinding studied earlier in this
section does not depend on the system size because of charge
whereE, was added by hand. The same result is obtained bpeutrality. Hence the thermodynamic limit can be safely
using the more general formalism developed in Appendix Diaken, provided the characteristic length over which the cur-
Indeed, by letting the position of an isolated defect tend tovature variegi.e., rg) is not too large compared ®[see Eq.
the center of the bump in E¢D24) we obtain the energy of (34)].
the singular field in the case of free boundary conditions and In considering the case of small system size, it is impor-
the result matches E@42). As discussed in Appendix D, a tant to keep in mind two assumptions implicit in the present
defect located at; is attracted to the boundary Rtfor free  treatment. The radius of curvaturg/ « must be much larger
boundary conditions. One can think of this interaction asthan the core radius everywhere for the continuum approach
resulting from an image defect of opposite sign behind thdo be valid, that isyy> aa. Additionally, the Gaussian cur-
edge of the sample at positiar} such that the following vature must be vanishingly small at the edge of the system

relation holds in terms of the conformal radigigr’): which requiresk to be larger than a fewy,.
SR(R)Z D. Lattice of bumps, valleys, and saddle points
R(r{)=——-. (43 . o
R(r) In some experimental realizations perhaps modeled on

those of Ref.[12] the topography will be periodic. In this
This result can be understood by analogy to the familia°ection we d|§cuss quahtat;vely how the_results descnb_ed
above generalize to a two-dimensional lattice of bumps with

electrostatic problem of a charged line located a distance . ) . :
from the center of a cylindrical grounded conductor Whosevarlable aspect ratio for both square and triangular lattices. A

axis is parallel to if35]. The analogy becomes precise if one more quantitative approach to this problem would involve
letsr,—R(r;) as explained in Appendix D finding conformal set of coordinates for periodic boundary
I 1 .

. - . conditions. This is possible in principle but more involved

If the geometric potential is not strong enougts in the since cylindrical symmetry is now lost. Nonetheless, the in-

flat space limita=0), the defect will migrate to the edge of Lition yained b s¥ud in %he single bljm allows us ’to make
the sample and annihilate with its image leaving a smootﬁ 9 y ying 9 P

field. On the other hand, when the aspect ratio is sufficientl?Ome guesses for the ground state. We first note that the

large, the defect can lower its energy by sitting at the Cemeg_eometnc potential generated by the lattice of bumps is not

of the bump. Comparison of E@42) with Eq. (31) shows §|mply the.superposmon of resullts for smg.le bump poten-

. . o tials. This is caused by the nonlinear relation between the
that, unles>ro, the energy of the single vortex instability urface height and the Gaussian curvature acting as a source
will be lower than or at least comparable to the unbinding offsor the eogmetric otential. To exolore this o?nt further
a defect dipole. In fact, the threshold, that « needs to €9 P ) b P y

. X . TR . consider what happens when four bumps are placed at the
exceed to trigger the single defect instability is easily ob-
tained if the values of the geometric potential at the origin
are tabulated for different aspect ratios, as illustrated in Fig. A similar mechanism applies to superconductors in a uniform
5. The condition for single vortex generation reads magnetic field.
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L./ - N\ e\ W For the triangular lattice, we conjecture that the first tran-
2. JJJ & ) = ‘& = sition corresponds to positive defects on top of the bumps
2 i and negative ones between the bumps along one of the three
axis of symmetry of the unit cell. As the value of the aspect

7}

0

It}

ratio is increased, additional positive defects appear on the

six minima of the surface and negative ones are generated
/AN

along the remaining two axes of symmetry of the unit cell
1.5' ’ ' 0

(see Fig. 12 A simple count of the total defect charges en-
i NI

w

closed in the unit cell shows that this scenario also satisfies
the requirement of defect charge neutrality.

o)

IV. DEFECT DECONFINEMENT

N

With potential experiments in minf23], it is interesting
to consider the case of hexatic order on a bump encircled by
a circular wall of radiusg>ry which aligns the hexatic bond
angles. As a simple model, imagine an array of hexagons

-

2

S5 iy T s o UUIITARY LU IZA LI which locally achieve a common orientation tangential to the
wall [see Fig. 1&) below]. The hexatic order parameter will
l thus rotate by 2 upon making a circuit of the wall, insuring
that at least six defects of “charge’#26 must be included in

the ground state for all values of the aspect ratio. These
boundary-condition-induced defects will interact with the
Gaussian curvature of the bump and with the wall. The
defects contribute largéconstant self-energies of the form
SNKg? In(R/a) that dominate the total energy for suffi-
ciently large systems. Sin@!\idlqi must be equal to 2, the
energy is minimized when the defects split up into the small-

FIG. 12. (Color onling (Top) Ground states for squatkeft) and
triangular(right) arrays of bumps. The first and second rows corre- .
spond to moderate values of the aspect ratiaespectively. For est pOSSIbIe__Ch_arges. ! ) s
simplicity, we assume that, the bump width, is comparable to the The eqwllbrl_um _defect configuration r_ngst minimize the
lattice spacing. Positive defectd dots “screen” regions of posi- €€ €nergy taking into account the confining potential gen-
tive Gaussian curvature while negative orielsie dots are located ~ €rated by the Gaussian curvature and the interactions of the

on the saddles of the “hilly” landscape. defects with the boundary and among themselves. The repul-
. ~ sive force exercised by the wall on a defect locatethét)
vertices of a square. At the center of the square a minimunh the conformal plane can be computed by placing an image
of the height function occurs corresponding to@wregion  gefect of same charge outside the wall at position
of positive Gaussian curvature. This effect is particularlysy(R)2/91(r,). The mathematics resembles the problem of

acute forro<L, wherelL is the bump spacing. In general ,qing the magnetic field of a line current located at a given
interference between bumps creates a dual lattice of valley istancer; from the center of a cylinder of high-permeability

A similar breakdown of the superposition principle arises formaterial and whose radi®is greater tham; [35]. The anal-

triangular lattices. 9y is complete upon performing the change of coordinates

As the aspect ratio of hilly landscapes such as thos X o .
shown in Fig. 12 is increased, defects can be created tB_’m(r) and identifying the gradient of the bond angle

screen the Gaussian curvature. Their positions can bé:f(U) with the magnetic field. This is explained in detail in
guessed by considering a unit cell of the lattice such that th&ppendixes C and D where we introduce a conjugate func-
integrated Gaussian curvature vanishes. For a square lattidéQn x(u) analogous to the vector potential that simplifies the
we conjecture that the first topography induced transition isinalysis of this problem. Thus, each of tNg defects will
associated with the appearance of positive defects at the t@dso interact with an equal number of image defects. This
of the bumps and negative ones halfway between them in th&ituation can be described mathematically by deriving an ap-
vertical or horizontal directiorisee Fig. 12 This twofold  propriate Green’s functiod™ that includes the images, as
degeneracy is compatible with the symmetry of the latticediscussed in Appendix Dsee Eq(D19)]. The resulting free
and analogous to the freedom in choosing the axis alongnergyFN reads

which the first disclination dipole appears on the single — Ny g

bump. The negative defects are shared between two adjacent = _ 1< Ny .y (1 -4 .

cells while the positive ones are shared among four cells thus K, 22 GG 0x5x)) +Fo % q,(l 477)V(r')

ensuring overall charge neutrality. As the value @fin- N N
creases even more, one might expect an additional positive 192 [(RR g2 9
defect appears in the valley located at the center of each cell +2 7 -In -2 - In(1-x)
and two additional negative defects shared with the adjacent

cells are created between the bumps at right angles to thehere F, is defined in Eq.(17) and the Green’s function

direction discussed aboysee Fig. 12 I'N(x; ,Xj) is given by

j#i i

(47)

i=1 47 i1 4m
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0.4 F/ky

0 0.25 0.5 0.75 1 1.25 1.5 1.750Q

FIG. 13. (a) The free energy for a nematidouble headed vec- FIG. 14. Plot of the free energy of a nematiouble headed
tor field) living on a Gaussian bump surrounded by an aligningVvector field on a Gaussian bump encircled by an aligning wall as a
circular wall is plotted fore=2 as a function of the scaled radial function of @. The dotted line represents the energy of the fully
coordinatesy, and x, of the two disclinations. The radial coordi- deconfined configuration in Fig. {3 top panel while the continu-
nates have been scaled hyand the size of the system &= 7r,. ous line corresponds to the defect pattern illustrated in the bottom
Note that the energy plot is symmetric with respect to the kpe panel of Fig. 180). The energy of the fully deconfined configura-
=x,. (b) Schematic illustration of the positions of the two disclina- tion is approximately independent of because the two disclina-
tions (black dot$ corresponding to the deep energy minima at po-tions are far away from the bump.
sitions x;=0.04 andx,=4.9 (or vice versaand to a shallow mini-
mum atx;=x,=4.7. The two defects are on opposite sides of the
bump. The continuous line corresponds to the circular boundary an
the dashed one to the circle of zero Gaussian curvature and rgdius
(drawing not to scale

Fig. 13b) top panel. As the aspect ratio is raised even fur-
tcper, the saddle in the energy landscape of Figa)lBe-
comes a minimum corresponding to a configuration in which
both disclinations are confined in the cup of positive Gauss-
ian curvature by the geometric potential.
1 As illustrated in Fig. 14, there is a critical value of the
Niy oy ) — _ — 2.2 oy . aspect ratiopp=1.5, above which it is energetically favor-
i) = 77 I3+ xj = 2xxjc0s i = )] able for the system to have one disclination confined at the
1 top of the bump. For< ap the fully deconfined configura-
- In[xi2X-2+ 1-2x cod ¢ — ¢))]. (48) tion becomes energetically favorable, but the two minima
A : : : can still coexist. Asy is decreased even further, the repulsion
between the two disclinations overcomes the confining force
The last term accounts for the interaction with the imageof the geometric potential and makes the second minimum in
defects and the superscriptindicates Neumann boundary Fig. 13a) (corresponding to the partially confined configu-
conditions on an appropriate potential function. Here, we useation) disappear altogether. This “spinodal point” occurs for
scaled coordinates in the conformal plane=R(r;)/R(R). a=0.9 on the Gaussian bump. The specific values of the
The interaction of the defects with the curvature is not af-critical aspect ratios are geometry dependent, but the generic
fected by the presence of the distant wall. mechanism of deconfinement depends only on a large sepa-
To provide an illustration of the combined effect of cur- ration of the length scales, andR that control the interac-
vature and boundary conditions on tangential vector ordetion with the curvature and the boundary respectively.
we first consider the simpler case of a nematic order param- The analysis for the hexatic case is complicated by the
eter with periodicity equal tar. This simplified model ne- fact that more defect configurations are possible when six
glects differences in the elastic constants for bend and splagefects are present. We start by noting that even in flat space
and does not incorporate any effect due to the uniaxial couta=0) there are two natural low-energy defect configurations
pling of the nematogens to the curvature. In this case, miniwith high symmetry: the ground state corresponding to the
mization of the logarithmically diverging part of the free six defects sitting at the vertices of a hexagon and a higher-
energy[fourth term in Eq.(47)] suggests that there will be energy state given by a pentagonal distribution of defects
only two disclinations of chargg= displaced along a ra- with the sixth defect sitting at the center of the circular
dial direction[see Fig. 1&)]. By applying Eq.(47), we can  sample[see Fig. 1H)]. As the aspect ratio is raised, the
parametrize the energy of the system in terms of the scalegentagonal arrangement becomes energetically favored since
radial coordinates; and x, of the two disclinations. The it pays to have a defect confined in ttgeometri¢ potential
resulting energy landscape is plotted in Fig.(i&# =2 and  well at the origin[see Fig. 16)]. To study the transition, it is
R=7rp) and clearly reveals two minimal-energy configura-useful to derive expressions for the energy of the two defect
tions. The first minimum corresponds to one disclinationconfigurations as a function of the radius of the outer defect
confined at the top of the bumgslightly shifted from the ring r. Every defect(except the one at the origin, possiply
centej and the other at a radial distance approximately 70%nhas the same scaled coordingtex and the angles between
of R [see Fig. 1&) bottom pangl The second minimum two defects are integer multiples ofr2n wheren is the
corresponds to a fully deconfined state with both disclinanumber of defects in the outer ring=5 for the pentagon
tions placed symmetrically at approximately 67%FRfsee  andn=6 for the hexagon In this case, the sums involved in
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F/k disclination is trapped in a potential well whose depth is
-0.4 approximately given by T141—477a2 [see the second term of Eq.
0.6 (51) and the lowa expansion folV(0) derived in Eq.(26)].

The critical aspect ratiaxy for which the deconfinement
-0.8 transition occurs can be estimated by setting the depth of this

potential well equal to the energy difference between the

hexagon and pentagon configurations in flat space. The latter
can be read off from the energy diagram in Fig(@%snd the

. result is approximately OK3, which leads toap~1.1 in

FIG. 15.. Plot of the fr.ee energy of a hexatic p_hadzaped on agreement with the value indicated in Fig.(45

the Gaussian bump encircled by a wals a function ofe. The " ag the aspect ratio is raised even further, less symmetric
dotted line represents the energy of the hexagonal conflguratloaefect configurations become energetically favored corre-
illustrated in the top panel on the left while the continuous IineFSE onding to a larger number of disclinations confined in the

corresponds to the pentagonal arrangement in the bottom panel. T b of positive Gaussian curvature. For example, when two

outer defect rings in both configurations are approximately 90% odisclinations are confined within=r- the outer defect rin
R. The critical aspect ratia corresponding to the deconfinement .~ .0 9
transition discussed in the text is indicated by the dashed line. Is given by four defects approximately Iocat_ed at .the vertices
of a square. We note that these defect configurations cease to
i _ . ) . exist at low aspect ratios because they require the geometric
the first (interaction term in Eq. (47) can be efficiently stential to overcome the strong repulsive interaction be-

evaluated using the following identity: tween the confined defects. As discussed earlier for Fig. 14,
T o the actual values of the aspect ratios involved depend on the
—2 In{pz +1-2p co{—)] =In(1-p" —In(1-p). specific geometry of the substrate. However, the basic
25 n mechanism behind the deconfinement transition is more gen-

(49) eral.

Note that, asa increases, the geometric mechanism of
Upon using Eq.(49) with p=1 and p=x° to evaluate the defect-dipole unbinding discussed in the last section may
sums arising from the first and the second terms of theso set in. Because of the presence of one or more positive
Green's function in Eq48), respectively, we obtain the free defects at the top of the bump, the critical aspect ratio nec-

energyFy for the hexagonal configuration: essary to unbind one dipole will be larger than what was
= R 5 (o, 17 calculated_ before. If dipole u_nb_inding does occur, the new
Ful@) =-Z In[(ﬂ) - (ﬂ) -Zine defects will “decorate” the existing patterns by adding new

Ka 6 AR A(R) 6 positively charged disclinations in the region of positive

117
+ ?V(r) + 5 In external region of the bum@ >r;) where the Gaussian cur-
vature is also negativesee Fig. L
The free energy for the pentagonal configuratibp is
readily obtained after similar manipulations:

T [ER(R)] (50 Gaussian curvature and expelling the negative ones in the

V. CONCLUSION

= 5 6 16 _ i
Fe(@) = I {( () ) - ( A(n) ) ] -z In2 We have discussed how the varying curvature of a surface
Ka 36 R(R) R(R) 2 such as a “Gaussian bump” can trigger the generation of
117 55 7 | RR) single defects or the unbinding of dipoles, even if no topo-
+ EV(O) + ¥V(f) *e In| —— (51 logical constraints or entropic arguments require their pres-

ence. This mechanism is independent of temperature if the
Note that these manipulations are very similar to the onesystem is kept well below its Kosterlitz-Thouless transition
necessary to describe superfluid helium in a cylinder of ratemperature. It would be interesting to revisit Kosterlitz-
dius R [37]. In fact, the superfluid problem is analogous to Thouless defect-unbinding transitions on surfaces of varying
the case of hexatic order witree boundary conditions on a Gaussian curvature in the presence of a quenched topography
circular boundary of radiuR (see Appendix D The rather [13] in the light of the present work. One might also explore
unusual form of the argument of the logarithm in E¢g0)  the dynamicsof the delocalization transition that occurs
and(51) arises from the sum over the image defects whosevhen a bump is confined by a circular edge and the aspect
positions depend nonlinearly on the position of the defectsatio is lowered until the defects, initially confined on top of
themselves. the bump by the geometric potential, are forced to “slide”
Minimization of Egs.(50) and(51) with respect ta fixes  toward the boundary. Quantitative studies of periodic ar-
the distance of the outer defects. The resulting minimal enrangements of bumps would be interesting and could be in-
ergiesFp andF are plotted as functions ef in Fig. 15a). spired by fruitful analogies with methods and ideas from
For the critical valuenp, Fp<Fy can be easily estimated solid state physics.
by realizing thatF,, is approximately independent af be- We also hope to extend this work by considering crystal-
cause the disclinations are far from the bump. On the otheine order on bumpy topographies and taking explicitly into
end, Fp decreases with increasing because the confined account the screening of clouds of dislocations and possible
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N strate that this transformation provides the basis for an effi-
cient strategy to determine the Green'’s function on a bumpy
substrate. We start by deriving the radial change of coordi-
natesfR(r) that transforms the original metric of the Gauss-

S ian bump, i.e.,
A \\ ~ 2,2
r 2
NN ds’= (1 +a—2e‘r2’fo>dr2+ r’dg?, (A2)
Conformal plane A N o
5 into the locally flat metriqiin polar coordinates
FIG. 16. Graphic construction of the stereographic projection. dg = ep(r)(d%2+i)%2d¢2), (A3)

Regions close to the north pole have larger images in the conformal

plane than regions of equal areas close to the south pole. The st&herep(r) andi(r) are independent of the azimuthal coor-

reographic projection preserves the topology of the surface prodinate ¢ because of cylindrical symmetry. This metric is

vided all points at infinity are identified with the north pole. equivalent tdg,,(x) upon switching from Cartesiafx,y) to
polar coordinate$i(r), ¢). To simplify the notation we in-

generation of grain boundari¢$6]. Such an analysis would troduce thea-dependent functiof(r) defined by

facilitate comparison with experiments performed with a 22 P
single grain of block copolymer spherical domdios a suit- I(Nn=1+ a—z exp(— —) , (A4)
ably patterned substrafé2,23. o 0

and plotted in Fig. 2 for different choices af
ACKNOWLEDGMENTS The equivalence of the metrics in Egh2) and (A3) re-
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primarily through the Harvard Materials Research Sciencel he conformal factor is thus given by
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and through Grant No. DMR-0231631. e’ = <§> ) (AB)
APPENDIX A: GREEN'S FUNCTION The solution of Eq(AS) is

AND ISOTHERMAL COORDINATES cdr’
. R(r)=Arexp — [ —[VI(r')-1]], A7
The analysis of ordered phases on curved substrates can ®) xp( fr r' ) ]> (A7)
be simplified by rewriting the original metric of the surface

gap(U) in terms of a convenient set of coordinate&u) ~ Where it is convenient to set the arbitrary constakisndc

=(x(u),y(u)) such that the new metrig,,(x) reads to unity and infinity, respectively. This nonlinear stretch of
the radial coordinate leaves the origin and the point at infin-
Tap(X) =€V 8, (A1) ity invariant and can be concisely written as
The metricg,, differs from the flat space onéy, only by a R(r) =reV", (A8)

conformal factore’™Y) that embodies information on the cur- ) .
vature of the surfacgs1]. Theseisothermal coordinatesan ~ Where the functionv(r) defined by

be used to map arbitrary corrugated surfaces onto the plane o -1
[38]. The mapping is conformal so angles are left unchanged V(r) = _f dr’V(L, (A9)
but areas are stretched according to the position-dependent r r'

conformal factore?™Y), A familiar example is provided by _ _ _ L
the stereographic projection that maps a sphere onto the COHI-ayS an important role n our forr_nal_lsm and its Interpreta-
formal plane as illustrated in Fig. 16. tion as a sort of geometric potential is explored in detail in
The Green'’s function assumes a very simple form after f\ppendlx .B' . , ,

conformal transformation, because the Laplace operator re- 1€ Poisson equation for the Green's functigioi, u’) on
duces to the familiar flat space result when expressed i Surface with metric tensa,, and point sourcesu,u’)
terms of isothermal coordinates. In what follows, we demon€2ds[26]
- N . _ o,

3The radius of block-copolymer spherical cores is of the order of DD,I'(u,u’) =~ \a ’ (A10)
a few nanometers and their spacing tens of nanometers. These val-
ues can be tuned by suitably choosing the block copolymers anwhere the covariant Laplacian is given for general coordi-
varying their volume fraction. nates by
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DD = (1/\@)(9 [\@gaﬁﬁﬁ]' (A11) APPENDIX B: GEOMETRIC POTENTIAL
The conformal change of coordinates transfordm In this appendix we present two equivalent ways of deter-

into e 'g(ﬁ% #) and g*4(r, ¢) into e*gB(R, ¢). The mining the explicit form of the geometrical potentis(u)
factors Ofep(r inside the square brackets in Eé11) then valid for azimuthally symmetric surfaces like the Gaussian
cancel and we are left with the flat space Laplacian in thé)ump The starting point is the general definition introduced

polar coordinateq2R(r),¢). We conclude thaf'(u,u’) is n Sec. Il C:
simply the Green’s function of an undeformed plane ex-
pressed in terms of the polar coordina(exr), ¢): V(u) =~ J dA'G(u")I'(u,u’), (B1)
I'(uu’)=- 1 IN[9R(r)2 + R(r")2 - 2R(NR(r") with the Green’s functiod” as defined in Eq(A10). In the
47 electrostatic analogy/(u) is thus the potential induced by a
xcodd - )], (A12) continuous distribution of “charge” represented by the

Gaussian curvaturgvith sign reversed We shall derive an
where an arbitrary additive consta@t(which can be used to analogue of the Gauss law for corrugated surfaces where the
satisfy boundary conditions at infinithas been dropped. We curvature of the surfac@vith sign reversepplays the role of
note thafl"(u,u’) differs from the flat space Green’s function a continuous density of electrostatic charge.
by a nonlinear stretch of the radial coordinate. In Appendix The first derivation makes use of the fact th4u) is a
C, we will usel'(u,u’) to solve Poisson’s equation on an scalar under conformal transformations. This symmetry can
infinite bumpy domain and calculate the energy stored in thé&e checked explicitly by applying the same reasoning
field. As in flat space, the Green’s functidifu,u’) will be  adopted for the equation satisfied by the Green’s function in
suitably modified in a finite system in a way that depends orAppendix A to Eg.(B1). In fact, upon operating on both
the boundary conditions chosen at the edge of the sampkides of Eq(B1) with the covariant Laplacian and using Eq.

(see Appendix D (A10), the defining equation for the geometric potential can
We conclude this appendix by evaluatifigu,u’) when  be cast into the differential form
the two pointsu andu’ are assumed to be separated by a D*D,V(u) = G(u). (B2)

fixed distancea small enough so that the surface can be

approximated by the local tangent plane to the Gaussiafmhe Gaussian curvature in E@2) can be written in confor-
bump. This short distance behavior will be useful whenmal coordinate$31] as

evaluating the effect of aonstantcore radius on the ener-

getics of a disclination at an arbitrary position. The fixed G(x,y) = — e PO (Z+ ,92) (X y) (B3)

microscopic lengtha on the bump is stretched when pro-
jected in the conformal plansee, e.g., Fig. JGand assumes

the position-dependent valugx.y) given by wherep(x,y) is the conformal factor introduced in Appendix

A. Similarly the left hand side of EqB2) can be expressed
A(x,y) = ae P2, (A13) in conformal coordinatef31] as

For a Gaussian bump cylindrical symmetry requires that DD, V(X) = + &35+ BV(xY). (B4)
A(r, ¢) is dependent only on and can be explicitly written  ypon substituting Eq(B3) and (B4) in Eq. (B2), we con-
upon using Eqs(A6) and(A8) as clude immediately that the geometric potential in conformal
( ) coordinates/(x) is given by

7 V(r)
A\r,¢)=a =ae'", (A14) k)
V(x,y) == T (B5)
We can now evaluatE(u,u’) in the limit u’ —u+a, where
this concise notation means that the two points on the surfaddpon using Eqs(A6), (A8), and(A9), to substitute in Eq.
with coordinatesu andu’ are separated by an infinitesimal (B5), one obtains the explicit form of the geometric potential
distancea measured on the bump. It does not matter in whafor the bump parametrized by the coordinatesp):
direction the two points approach each other as long &s . —
small compared to the local radii of curvature. Upon using V(r) :_J dr’vl(r ) -1 (B6)
Egs.(A12) and(A14), we obtain ; o

( ) where thea-dependent functioh(r) was defined in EqA4)

F(uu+a)=- l (&%) - (A15) and plotted in Fig. 2. The result of the integration in E86)
is independent ofp because of azimuthal symmetry. The
We note thal’(u,u+a) for fixed ais not a constant as in flat upper limit of integration is chosen consistently with Eq.

space but varies with position as the functM(m), reflecting  (B2) as usually done in electrostatics.

the lack of translational invariance on an inhomogeneous A second derivation of this result is obtained by making
surface, where properties such as the Gaussian curvature aksgplicit use of the azimuthal symmetry of the bump and
vary with position. deriving a covariant form of Gauss’ law which allows an
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intuitive understanding of the interaction between defectdield E'(r) in terms of the integrated Gaussian curvature di-
and curvature. This curved space version of Gauss’ law illuvided by the length of a boundary circle of radiyswith the
minates the electrostatic analogy used throughout the textesult

The gradient of the geometric potential defines an “electric T
o ; =\
field” E, given by E = arTE Er)( ), (B14)

where we used Eq$A2) and(B11). The angular component

E¢is zero everywhere. Note thgf(r) vanishes linearly with
i 2

where we have used E(B1). One might expect that the flux r for smallr and decays likae "3 for r>r, From Eq.

of the vectorE” through a closed loop is proportional to the 14) one can obtain the geometric potentiélr) by per-
enclosed Gaussian curvature in analogy with Gauss’ law th%q3 . o
orming a line integral,

relates the flux of the electric field to the electrostatic charge
enclosed. To prove this assertion, we invoke the generalized * * hr -1

. ! T ! \ r )
Stokes formulg26] that relates the surface integral oveof V()= | dr'gyE'=-| dr o (B1Y)
the gradient of a field to its flux through the contour ld@p r r

£, =-DVW) = [ sGWDIuw), (B

which matches the result previously obtained in EBp).
f dAD,E*= —fﬁ du®y, PEg. (B8)
A C APPENDIX C: FREE ENERGY

. . . L ON A CORRUGATED PLANE
The covariant antisymmetric tensgy is given by

- In this appendix, we derive the effective free energy for a

Yap = VG€ap: (B9 charge neutral configuration of defects confined on an infi-

where €, is the antisymmetric tensor witls, ;=€ =1. nite surface of varying Gaussian curvature with the topology
Similarly y*# equalse,z/ Vg and the following identity holds of the plane. A general method was introduced in R&@]

[21]: that allows treatments of the more complicated case of de-

formed spheres. A detailed treatment of boundary effects is

Y Yop =~ - (B10) developed in Appendix D. Here we simply assume that the

The tensory,#=y,,9°¢ performs anticlockwise rotations of size of the system is much Iarggr than the size of the bump
/2 when acting on an arbitrary tangent vedigs as can be and.that the bo_undary does npt impose any topological con-
checked by evaluating/”‘yaBVf ,yaﬁvavﬁzo, where we Straint to the director of the I|qg|d cr_ystal. The.results pre-
have used the antisymmetry gf ;. Thus, the Vectoduanﬁ sented here m.altch those obtained in Appendix D for free
in Eq. (B8) represents an infinitesimal contour length timesPeundary conditions, as long as the defects are far from the
the inward unit vector perpendicular to it. The dot productPoundary. Suppose that all t¢, defects have the same
with the fieldE ; then generates the flux. To calculate the fluxCircular core radius which does not depend on where they

piercing a circular circuit centered on a Gaussian bump, Wé\re_located on the surf_ace. This assumption is ju_stif_ie(_j if the
will need to explicitly evaluatey¢r, radius of curvaturey/ « is much greater thaa. In this limit,

the microscopic physics that determingss insensitive to
ro_ " (B11) the presence of the curvature and since the bump is locally

Yo \m flat a is approximately constant everywhere. The starting

point of our analysis is the free energy expressed in terms of

Upon using Eq(B7) we can rewrite the left hand side of the singular part of the bond angt(u),
Eq. (B8) as

1
== B - —

fdA DaEa:fdAf dAIG(UI)DBDBF(U,U’). F= 2KAJSdAga (ﬂaas Aﬂ/)(aﬁas A,B) (Cl)
(B12)  The cores of the defects are excluded from the area integral

in Eq. (C1); henceSis a disconnected domain corresponding
If we now recall the defining EqA10) of the Green's func- {5 the corrugated surface punctured at the positians
tion I'(u,u’) and keep in mind that the Laplacian in Eq. =(y,, ¢, of the defects. In the conformal plane parametrized
(B12) operates on the variables labeled by (not u), we by the coordinatéR(r) defined in Eq(A8), the defect cores
obtain using Eq(B8) a general result for the flux piercing a are circles whose position-dependent radius is given by

closed loop on the surface, namely, ae’"). The boundaries of the “core disks” are labeled@y
_ while the circular edge of the sample of radiRs$s denoted
jg dU“?’aBEﬁ:f d’uVgG(u). (B13) by B (see Fig. 17.
C A

Upon introducing a “Cauchy conjugate” functigiu) de-

We can explicitely evaluate the right hand side of E13)  fined by
with the aid of Eq.(12). By appealing to the cylindrical
symmetry, in the special case of the Gaussian bump one can

apply this covariant form of Gauss’ theorem to find the radialthe free energy in Eq.C1) can be cast in the form

aa 05 - Aa = 7aBaBX! (C2)
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N

(a)

Ng
— o(u,u;
fﬁ du“yaﬁﬁ/;x:f dz\g(G(U)_Eqi ( = I))a
c A i=1

Vg
(C9)

whereC is the contour enclosing an arbitrary surfaceThis
relation will be useful later.

We can formally solve fog(u) in Eq.(C7) in terms of the
Green’s functionl'(u,u’) found in Appendix A:

x(u) = f dA’p(u’)I'(u,u’), (C10
FIG. 17. (a) Defects with fixed core siza on a Gaussian bump A

encircled by a circular boundary of radiisdenoted byB. (b) The where boundary terms have been dropped using charge neu-

size of the vortex cores varies with position when plotted in thetrality and the fact that the edge of the sample is assumed to

conformal plane. One can avoid the singularities associated with th . :
defects cores by puncturing the conformal plane. This introducegg ga?lﬁ?gdﬂ?,vr}:;r:ﬁedggﬁ}? The integral in £G10) can

circular boundarie<C; of varying radius at the position of each
defect in the conformal plane, reflecting corresponding constant Ny

core radii on the Gaussian bump. () = gT(u,u;) —f dA'G(u")I'(u,u’). (C1))
i=1 A
1 Upon using Eq(B1), we obtain
F=2Ka f AA G030 (3X). (cy Pomusmo EAED. we
s o
In deriving Eq.(C3) we used the identity x(W) = gl Gl (U, ui) + V(u). (C12
9", 7. =9, (C4  We note that the first term is singular at positiendut when

which can be proved with the aid of E(B10) and the dis- X is substituted in Eq(C3) the resulting energy is finite
cussion following it. EquatioiC4) implies that the(covari- because the cores of the defects are excluded from the do-

ant dot product between two vectors after rotating each off@in of integratiorS. Upon substituting Eq(C?) in the sec-
them by /2 is equivalent to taking the dot product between©nd term of Eq(C5) we obtain

the two initial vectors. The integral in EGC3) can be re-
written as fdAXDaD“ =—J dA)(p(u)=f dA xG(u),
S S S
F 1 1
P Ef dA D,(xD%) - Ef dAxD,D%, (C5H (C13
: ° ° where we dropped terms involving th& functions in Eg.
where (C8) because they vanish everywhere except at the coordi-
@ — (11 [ B nates of the defects which are excluded from the domain of
DD = (1NG).(vagXdpx). (€8 integrations. Upon substituting Eq(C12) in Eq. (C13) we

andD“D,, is defined in Eq(A11). Upon taking an additional ~obtain
covariant derivative, we can recast EG2) in the form of a

N
Poisson equation for the electrostaticlike potengial), _f dAxD,D% = Ed gV(u)
D.D“x(u) == p(u), (o) ° =
where the analog of the electrostatic charge density is + f dAJ dA'G(uWI'(u,u’)G(u’),
given by
(C19
4 Su,u)
p(u) = 21 O Jo = - G(u). (C8  where we used EqB1).
- )

To evaluate the first term in EGC5), we apply the gen-
It is useful to compare Eq(C7) to Eq.(B2) used to define eralized Stokes formula of E¢gB8) and convert the surface
the geometric potential in Appendix B. Both expressions aréntegrals into line integrals over the boundaries:

Poisson equations, the only difference being that the source Ny

term of Eq.(C8) includes both the pointlike charges of the f dAD,(xD%) = > @ du*yy ﬁDﬁX‘jg dux 7D gx,
defects and the Gaussian curvature with its sign reversedJs i=1J ¢, “ B “
Hence the Gauss law discussed in Appendix B for the geo- (C15)

metric fieldE, applies also t@,,, provided that Eq(B13) is
suitably modified to include the contribution from the topo- where the difference in sign between the two boundary inte-
logical charges of the defects: grals in Eq.(C15) is due to the fact that the outward normals

051105-17



V. VITELLI AND D. R. NELSON PHYSICAL REVIEW E 70, 051105(2004)

for the path<C; are oriented opposite to the normal ®yrthe = Ny q Ng G2
outermost boundary of the system. — =Fog+, qi<1 - —')V(ri) -> ——In@
To evaluate the last term in E¢C15), we note that the Ka i=1 4 i=1 87
flux through the distant boundaB due to a charge neutral 1Mo Ny
distribution of defects is approximately zero, provided that +=> > aigiT (U, uj), (C19
the integrated Gaussian curvature enclosed by the boundary 2321 j+i

's vanishingly smal[see Eq(C9)]. Hence where we have used E¢A15) to evaluatel'(u;,u;+a). The

first term in Eq.(C19) is the free energy of the smooth
defect-free texturgsee Eq.(17) and preceding discussipn

ng du”nyBX =0, (C16) The free energy differenc&F/K, between a charge neutral
B defect configuration and a smooth texture thus reads
Ng N N
AF(e) 13 O Ecn
where we used the fact that defined in Eq(C2), is ap- K. EE E G Talri, 1T ) +K_2 Gi
A i=1 j#i Ai=1

proximately constant o8 since d,6—A,=0. By contrast,
the flux of g,y piercing the boundanC; in Eq. (C15) is Nq a

approximately equal to the chargeof the enclosed defeét. +2 Qi<1 - 4—'>V(fi), (C20
In evaluating the integrals around the infinitesimal bound- =1 m

ariesC;, we used the fact that the functigiiu; +a) evaluated  \here the subscrip in the Green’s function indicates
on the “rim” of the defect core centered &tand of radius 5 '

ae’ is dominated by a logarithmically diverging contribu- Ta(ro bt ) = — 1 ln(i)‘{(r) N R(r')
tion due to theith defect. This leading contribution is ap- avrE Tl a a’
proximately constant oi€;. On the other hand, the nondi- R(r) R(r)
verging part ofy(u;+a) is multiplied by the perimeter of; —p 7

and hence its contribution is of the orderafThe result of a

the integration will be insensitive to the orientation of the |, order to absorb the core radiasin the interdefect inter-
vectogs along the bounda@i, provided the defect core is action, we used the elementary algebraic identity
small” In this way, we find

cog ¢ — </>’)>. (C21

Ng Ng Ng
PILEEDIPIN TS (C22)
i=1 i=1 j#i

f duy,”xDgx = x(u; + a)jg du®y, drx = gix(u; +a).
C C

valid for charge neutral configurations. The core endtgin
Eqg. (C20 was added by hand and represents short distance
(€17 physics on scales less than or equal to the core radius. Al-
Upon substituting Eq¥C17) and(C16) in Eq.(C15, we  though the second part of the last term in EG20) arises as
obtain a position-dependent self-energy, it has the same functional
form as the geometrical potential discussed in Appendix B,

and hence depends on the global shape of the surface.
Ny

f dA D,(yD%y) = 2 qix(U; +a) APPENDIX D: BUMP WITH A BOUNDARY
s i=1 The aim of this appendix is to study the energetics of a
Ng Ng Ng singular vector field on a bumpy surface of circular shape
=> gV(u) + 2> > aigl"(u;,u;) and finite sizeR. To evaluate the ground state energy in Eq.
i=1 i=1 j#i (C1), we first need to solve the covariant Laplace equation
Ng for the bond-angle field(u) in the presence df; defects at
+ > T (u;,u; + ), (C18  Ppositionsu;. This is more easily done by switching frofu)
i=1 to the conjugate fielg(u), as shown in Eq.C3), and solving
the Poisson equatio(C7) satisfied byy for both free and
fixed boundary conditiongsee Fig. 18
where we used EqC12) to substitute fory. Substitution of The bond-angle field satisfies free boundary conditions if
Eqg. (C18) and Eq.(C14) in Eg. (C5) then yields the following relation holds on the circular edge
- 3,6,-r=0, (DY)
“The integrated Gaussian curvature in the microscopic disk is van- . . . .
is?ingly small. while for fixed tangential boundary conditions we have
If the defect core is very large, it may be necessary to place 5¢9|r=R: 0. (D2)

images within the defect core itself to impose a desired boundary
condition on its rim. This is not the regime considered in the presenfo understand Eq(D2), recall that we measure the bond
work (see Ref[39] for similar calculations performed in flat space angle 6 with respect to a rotating basis vectgyrin the radial
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f dALe(U)D ,D*Yfu) = /(u)D,D%(u)]
S

= —§ duy, LW dgpu) = fu)dge(u)]. (D7)
B

O
\
O ; - _ ,
A By applying Eq.(D7) to ¢(u)=x(u) and¢(u)=I"(u,u’) and
OQQ, 9/ using Eqs(A10) and(C7) we obtain

u)= | dAT(U’,u)p(u’) +® du'*y,Px(u)a,l'(u’,u
FIG. 18. (a) Schematic illustration of the boundary director tex- Xw fs ( Jplu’) éB Vo X )ﬂ( )

ture corresponding to free boundary conditions. The vector order
parameter orientation close to the edge of the sample does not vary
appreciably as one moves along the radial direction and it is parallel
to itself at every point on the boundany) Tangential boundary
conditions. The vector order parameter is locally aligned to a wallwhereu andu’ have been exchangédhe boundary condi-
located at the edge of the sample. tions for the Green’s function can be conveniently chosen to
eliminate unknown quantities in E¢D7) as in flat space
direction. With this conventiory is equal to a constant when [41]. B , .
the vector order parameter is aligned with the circular bound- DFor the Dirichlet problem, we choose the Green's function
ary B. We can convert EqgD1) and (D2) into boundary I'" so that it vanishes when’ is on the boundar{:
conditions to be satisfied by the conjugate figldn B. Upon I'°(B,u) = 0. (D9)
substituting Eq(D1) in Eq. (C2) and using the fact tha&, is o _ )
equal to zero, we obtain the constraint tiyan) satisfies on ~Upon substituting EqD9) in Eq. (D8) and noting thaj(u’)
B in the case of free boundary conditions: is constant on the boundaB/[see Eq(D4)], we obtain

—jg du'*y,PI(u’,u)dpx(u’), (D8)
B

XD(u):f dA'TP(u’,u)p(u’)
dgX|r=r=0. (D3) s

D ra, B 1Dy’
This corresponds to a Dirichlet problem whef®&u) evalu- X (B)ngdu Ya 9pl"(U",u).  (D10)

ated on the boundar3 assumes an arbitrary constant value
c The contour integral in the second term of EQ10) corre-
sponds to the flux piercing which is, in turn, equal to the

(unit) charge of the singularity located at’ The final result
x°(B) =c. (D4)  reads

Upon substituting Eq(D2) in Eqg. (C2), we obtain
g 0 Eab2yin BG. (€2 ) = J dA (TP’ )+ °(B),  (D1D)
S

dx=- Al, (D5) wherexP(B) can be set to zero, since the energy in &)
Yo is only defined in terms of derivatives gf One can check
that x°(u) in Eq. (D11) satisfies both the Poisson equation

since ny:O. Upon substituting Eqs(B11) and (8) in Eq. (C7) and the required boundary condition in E@3). This

(D5) we obtain the boundary condition githat corresponds can pe more easily proved_ by noting tH&(u ";) IS Sym-
to Eq. (D2): metric under exchange of its argumentsandu.

A similar reasoning applies tgM(u). However, we cannot
choose the Green'’s function so that the second term of Eq.

N 1 (D8) [which contains the unknown quantigu’)] vanishes.
X |r=R:_§a (D6)
®These manipulations are common in electromagnetism; see, for
N .. example, Ref[41].
where the superscript indicates that this is @ Neumann7rpic sssertion can be proved by applying Stokes theoj@sn

boundary problem with the normal derivative assuming agated in Eq(B8) with Eg replaced byd,I'(u’,u)] and using Eq.
constant value. (A10) to evaluate the surface integral.

~ To solve the Poisson equati¢@7) with Neumann or Di-  8Thjs assertion can be proved by applying Green’s theorem in Eq.
richlet boundary conditions in terms of suitable Green’sp7) to y(u)=T'(u,u’) and ¢(u)=I'(u,u”) and noticing that the

functions we exploit a covariant version of Green’s theorenyight hand side vanishes if the boundary condition in E2Q) is
expressed in terms of two invariant functions of positionsassumed. We can then conclude th8¢u’,u”)=I"°(u”,u’) in anal-

(u) and ¢(u) [40]: ogy with familiar results in 3D electrostati¢d1].
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In fact, by invoking Stokes theorefsee Eq(B8)], we note
that

3E du'*y,Pal(u’,u)=1, (D12)
B

wherey,#(u’=B) is constant on the circular bounda@yand
can be brought out of the integral. An appropriate choice of (@) o _ (b) _
boundary condition o™ that satisfies the constraint in Eq.  FIG. 19. Schematic illustration of the method of images. The

(D12) is image defect is of the same sign for free boundary conditians
and opposite for fixed boundary conditiafig. Defects closer to the
1 _ VI(R) center of the circle have images further away from it.

N (r' @51, P 1r= (D13)

27y,P(R) T 2R’
where we used EqB11). The a-dependent function(r’) ~ €nsure that Dirichlet§Neumann boundary conditions are
was defined in Eq(A4). Note thatl(R)=1, for R>r, (see  €nforced(see Fig. 19

Fig. 2. By substituting Eqs(D13) and(D6) in Eq. (D8) we The radial coordinate of the image defetis determined
obtain by the relation

2
P = f AATNU' Wp(u') + j de'x(R &)
s 2m 0

2
1 %(ri’)=%(R). (D19
- /_f dg'TNR,¢';1, ). (D14) R(r)
\’I(R) 0

The last two integrals are constant and hence can be dropped.
We can check explicitly thag™N(u) satisfies Eq.(D6) by Except for the coordinate change- fR(r), a similar relation

evaluating the radial derivative of¥(u) in Eq. (D14): arises in elementary electrostatic problems in flat spasg
A geometric argument that justifies this choice of images in
I (1.0 = f dA p(U)3TN (R i1, )| s, flat space is illustrated in Fig. 20. .
s Once the position of the source is chosen according to Eq.

(D15) (D18), we can express the two Green’s functions with the
concise notatiod™®N as follows:
where the radial derivative of the Green’s function assumes
the constant value derived in E@D13), provided that
I'N(u’,u) is constructed so that it is symmetric under ex- e Rt
change of its arguments’ andu [see Eq(D19)]. With the
aid of Egs.(C8) and(C12), we obtain

Ng
1
f dA p(u’) =2, q + 277<,= - 1) . (D16)
s i VI(R)
Upon substituting Eqs(D16) and (D13) in Eq. (D15), we
conclude that the Neumann boundary condition in @&f)
is satisfied provided that

rPI X

Ny
> g =2m. (D17) S o
i FIG. 20. Atopological defect located at positiénin a circular

It is reassuring that the topological constraint on the vorticitydomaln of radiusOQ in flat space. Fixed boundary conditions are

: . . gbtained by placing an image defect of the same sign at a distance
of the field imposed by the presence of the wall arises as B from the center such thap OP'=0Q2 The two friangles
natural requirement within this formalism. Similarly, the AOQP and AOQP' are similar andLOQP=A.OP’Q:7r—0’. By
Poisson equation fOXN,(U) is automatically sgtlsfled. , the theorem of the external angle, we conclude thatf= ¢+ as

We are now left with the task of guessing the Green'siyng a5q lies on the circumferenc®. This is equivalent to the
functions for the Dirichlet and Neumann problems satisfyingpoundary condition in EqD2) if a nonrotating vector basis is used.
the boundary conditions in EqgD9) and (D13), respec-  gimilarly, for free boundary conditions the symmetric Green’s func-
tively. In both cases the Green’s function can be determinegon is constant on the boundary if the image defect is negative.

by the method _of images appli_ed in the conformgl plane. FoBince PQ/P'Q=0P/0Q, the potential IMPQ)-IN(P'Q) (gener-
every defect with radial coordinatg we need an image de- ated by the defect at distanP and its imaggis constant on the

fect of opposite(equa) topological charge at positiorf to  circumference of radiu®Q.
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DIN(,, 11/ 1 ) ' , still vanishes by virtue of the fact that is constant on the
P u,u’) = " IN[R(r)+R(r')* = 2R(NR(r") boundaryB and the defect configuration is charge neutral.
For the Neumann problem we have

4
xcog¢p— ¢')] 4i |n(m(r)2 " 99:((:{))2
R(R)? ’ XNﬂg duy, Dy = 4w IN[R(R)], (D23)
_Zm(r)m COS(¢—Q’)’)> if(r’), B

where we assumed thRE>r. In this limit R(R) is approxi-
mately equal toR, as can be checked with the aid of Egs.

where we have introduced a functiof(r’) to make (A8)and(A9). _ _
I'®N(u,u’) symmetric under exchange of its arguments and All the remaining intermediate steps to derive the free

to remove a singularity at' =0. Note that we can adf{r’) energy follow as in Appendix C without further assumptions.

since the defining equation of the Green’s function does noYVe can readily generalize EQC20) to evaluate the energy

(D19)

contain derivatives of’, only of r: stored in the singular field in the presence of a boundary in
the case of both free and fixed boundary conditions. We as-
1 R(r') sumeR>r, but the defects do not need to be far away from
f(r') = > In( %R ) (D20)  the boundary. The result is
The plus and minus signs in E¢D19) ensure that the Di- ponN q N Na .
richlet and Neumann boundary conditions, respectively, are ~— = 52 g N5 %) + Fo + E Qi(l - f—;T)V(fi)
obeyed. In what follows the sign placed above in the sym- A 17 =1
bols = or * always indicates the choice suitable for the Ny 42 (RR) Ny g2
Dirichlet problem while the one below refers to Neumann + ;I (—) + > j_r In(l—xiz), (D24)
i=1 i=1

boundary conditions. One can explicitly check by substitu-
tion that the symmetrized Green’s functioi8™(u,u’) sat-
isfy the correct boundary conditions, as long as the plus sigtvhere Fq is defined in Eq(17). The Green's function ex-
is chosen whed™® is substituted in Eq(D9) and the minus Pressed in scaled coordinates reads

sign whenI'N is substituted in EqD13). Note that, without
the extra ternf(r’) in the expressions for both Green'’s func-
tions, I'® would not be equal to zero on the bound&yand
the last term in Eq(D14) would not be constant whd\ is

1
PPN = =~ InDx + 5 = 26x; cos = )]

; ; 1
substituted in. o _ _ = In[xizsz+ 1 - 2%, cod b — )].
Once the Green’s function is obtained, one can readily 47
write down y®N(u) by dropping the constant terms in Egs. (D25)

(D11) and (D14):

Ny In the case of Neumann boundary conditions, we have sup-
YONW) =S TN, uj) _f dA' G(U) TN, u’). pressed a term_ dlv_ergl_ng like[R(R)] ass_omated Wlth the

-1 s boundary contribution in EqD23). Equation(D25) is ex-
pressed in terms of a dimensionless defect posijpn

(D21
The Gaussian curvature is given by the covariant Laplacian . = R(ry) (D26)
of the geometric potential introduced in E&2). Upon in- ' RR)
tegrating by parts twice the second term in EQ21) and
applying Stokes theorem repeatedly, we find The plus sign in Eqs(D25) and (D24) is to be chosen for
Ny Dirichlet boundary conditions and the minus sign for Neu-
mann. The last term in EqD24) represents the interaction
MW =3 groMu,u) +Viw), (D22 a0 rep

UP™N(x;) between a single defect locatedxaand the bound-
ary:
where we assume thRE r, so that we can neglect boundary
terms. The geometric potenti®{u) has the same functional Ny G2
form previously discussed in Appendix B, despite the change UDMN(x) = £ K —— In(1 —xP). (D27)
in the Green’s function. i=1 47

The evaluation of the energy stored in the field now pro-
ceeds along the lines sketched in Appendix C with the onlyNote that theg-dependent prefactors blE/N(xi) and the qua-
caveat that one needs to choose the appropriate Green'’s furdratic correction to the curvature interactifiird term in
tion in Eq.(D19). In the case of Dirichlet boundary condi- Eq. (D24)] have the same magnitude. This is not a coinci-
tions one can prove that the boundary integral in @16)  dence but a clue to their common origin. As the geometry of

i=1
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a plane is modified, by either creating a varying curvature ohas been pursued in R¢80] to explain some basic features
imposing boundaries, the defects experience an additionalf the interaction between defects and curvature without ex-
interaction caused by the conformal transformation of theplicit recourse to the Green’s function techniques adopted in
underlying space. This line of reasoning is powerful and itthis work.
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