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We investigate topography-driven generation of defects in liquid crystal films coating frozen surfaces of
spatially varying Gaussian curvature whose topology does not automatically require defects in the ground state.
We study in particular disclination-unbinding transitions with increasing aspect ratio for a surface shaped as a
Gaussian bump with a hexatic phase draped over it. The instability of a smooth ground state texture to the
generation of asingledefect is also discussed. Free boundary conditions for a single bump are considered as
well as periodic arrays of bumps. Finally, we argue that defects on a bump encircled by an aligning wall
undergo sharp deconfinement transitions as the aspect ratio of the surface is lowered.
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I. INTRODUCTION

The melting of a two-dimensional crystal can occur con-
tinuously via two second order topological phase transitions
characterized by the successive unbinding of dislocation and
disclination pairs. At low temperatures, dislocations are sup-
pressed due to their large energy cost, but as the temperature
is increased, the entropy gained by creating defects over-
comes their cost in elastic energy and dislocation unbinding
occurs to reduces the overall free energy of the system[1–3].
The quasi-long-range order of the crystal is thus destroyed
leading to a hexatic phase that still preserves quasi-long-
range orientational order. This phase can be characterized by
a complex order parameter with sixfold symmetry. As the
temperature is increased still further, an additional
disclination-unbinding transition occurs and the hexatic or-
der is finally lost in an isotropic liquid phase[1].

Experimental evidence for hexatic order and defect-
mediated melting has been obtained in systems as diverse as
free standing liquid crystal films[4], Langmuir-Blodgett sur-
factant monolayers[5], two-dimensional magnetic bubble ar-
rays [6], electrons trapped on the surface of liquid helium
[7–9], two-dimensional colloidal crystals[10,11], and self-
assembled block copolymers[12].

The unbinding of defects in the plane is entropically
driven and at low temperature defects are tightly bound. By
contrast, on surfaces with nonzero(integrated) Gaussian cur-
vature, excess defectsmustbe present even at very low tem-
peratures. The theory of topological defects in ordered
phases confined to frozen topographies with positive or
negative Gaussian curvature has been investigated previ-
ously; see, e.g.,[13–15]. As a general rule, regions of posi-
tive or negative curvature(valleys, hills, or saddles) lead to
unpaired disclinations in the ground state, possibly screened
by clouds of dislocations. These clouds can in turn condense
into grain boundaries at low temperature. The predictions of
recent studies of crystalline order on a sphere[16] have been
confirmed in elegant studies of colloidal particles packed on
the surface of water droplets in oil[17]. Investigations of the
physics of defects in curved spaces have also been carried
out for fluctuating geometries[18–21]. The dynamics of
hexatic order on fluctuating spherical interfaces was studied
in Ref. [22]. Quenchedrandomtopographies in the limit of

small deviations from flatness were investigated in Ref.[13].
In the present work, we investigate topography-driven

generation of defects on simple frozen surfaces with spatially
varying Gaussian curvature whose topology doesnot auto-
matically enforce their presence in the ground state. We
study in particular a two-dimensional “bump” with a Gauss-
ian shape and dimension large compared to the particle spac-
ing. For such a hilly landscape, flat at infinity, thegeometric
control parameter is an aspect ratio given by the bump height
divided by its spatial extent. Consider a hexatic phase draped
over such a bump. For small bumps, the ideal hexatic texture
is distorted, but there are no defects in the ground state. As
the aspect ratio is increased, we find that disclination pairs
progressively unbind atT=0 in a sequence of transitions
occurring at critical values of the aspect ratio. The defects
subsequently position themselves to partially screen the
Gaussian curvature. For bumps embedded in surfaces of suf-
ficiently small spatial extent, a second instability of the
smooth ground state needs to be considered. In this case, the
energy stored in the field can be lowered by generating a
singlepositive defect at the center of the bump. Novel effects
also arise when the hilly surface is encircled by an aligning
circular wall that ensures a 2p rotation of the orientational
order in the ground state. In this case, some of the positive
defects required to match the curvature of the boundary are
confined to a hemispherical cup centered on the bump, pro-
vided the aspect ratioa is larger than a critical valueaD.
Whena is lowered belowaD, the positive defects originally
“trapped” in the hemispherical cup start undergoing a series
of sharp “deconfinement transitions,” as they progressively
migrate to new equilibrium positions dictated by boundary
conditions and the finite system size. We also suggest pos-
sible ground states for periodic arrays of bumps, like those
on the bottom of an egg carton.

A natural arena to experimentally study the interplay be-
tween geometry and defects is provided by thin copolymer
films on SiO2 patterned substrates[23]. Flat space experi-
ments by Segalmanet al. have already demonstrated that
spherical domains in block copolymer films form hexatic
phases[12].

Our results for hexatics on frozen topographies also apply
to otherXY-like models, as might be appropriate for tilted
surface-active molecules on curved substrates with interac-
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tions which favor alignment. The results are relevant as well
to twofold nematic order on frozen topographies. In both
cases, we expect qualitatively similar defect-unbinding tran-
sitions, although the equivalence becomes more exact in the
one-Frank-constant approximation[24]. Related results have
been obtained recently for order on a torus[25]. Even though
the integratedGaussian curvature vanishes, defects appear in
the ground state in the limit of fat torii, unless the number of
degrees of freedom is very large.

The outline of this paper is as follows. In Sec. II, the
relevant mathematical formalism is introduced and used to
highlight similarities and differences between defects on sur-
faces of varying curvature and electrostatic charges in a non-
uniform background charge distribution in flat space. As an
example, we calculate the distorted, but defect-free, ground
state texture of a hexatic confined to a surface shaped as a
“Gaussian bump” for aspect ratios below the first
disclination-unbinding instability. In Sec. III, we investigate
curvature-induced defect formation for an isolated bump and
a periodic array of bumps. In Sec. IV, defect deconfinement
is discussed and in Sec. V various experimental issues re-
lated to our analysis are highlighted along with some direc-
tions for future work. The development of the mathematical
formalism is largely relegated to appendixes. In Appendix A
the Green’s function for the covariant Laplacian is derived
by means of conformal transformations. In Appendix B, we
introduce a geometric potential whose source is the Gaussian
curvature. In Appendix C, we present the general formula for
the energy of textures with defects in terms of the two func-
tions derived in Appendixes A and B. We thus explore the
existence of position-dependent defect self-interactions that
arise from the varying Gaussian curvature. Finally, boundary
effects are discussed in Appendix D.

II. HEXATIC ORDER ON A SURFACE

A. Electrostatic analogy

The free energy for hexatic degrees of freedom embedded
in an arbitrary frozen surface can be written as

F =
KA

2
E dA DanbsudDanbsud, s1d

whereu=hu1,u2j is a set of internal coordinates,nsud is a
unit vector in the tangent plane,Da is the covariant deriva-
tive with respect to the metric of the surface, anddA is the
infinitesimal surface area[18,19,21,26]. The generalization
to systems with ap-fold symmetry is straightforward pro-
vided that the one-Frank-constant approximation is used and
the consequences of the uniaxial coupling neglected[24].
This choice of free energy implies that the minimal energy
configuration will be given locally by neighboringnsud vec-
tors which differ only by parallel transport. The curvature of
the surface induces “frustration” in the texture. In fact, by
Gauss’ “theorema egregium”[27,28], tangent vectors parallel
transported along a closed loop are rotated by an amount
equal to the Gaussian curvature integrated over the enclosed
area. On a sphere, for example, the hexatic ground state al-
ways has 12 excess disclinations as a result of this frustration

[14,29]. More generally, the sum of the topological charges
on any closed surface is equal to the integrated Gaussian
curvature.

By introducing a local bond-angle fieldusud, correspond-
ing to the angle betweennsud and an arbitrary local refer-
ence frame, we can rewrite the hexatic free energy intro-
duced in Eq.(1) as

F =
1

2
KAE dA gabs]au − Aads]bu − Abd, s2d

wheredA=d2uÎg, g is the determinant of the metric tensor
gab, andAb is the spin connection whose curl is the Gaussian
curvatureGsud [26,28]. The spin connection can be viewed
as a “geometric vector potential.” A free energy like Eq.(2)
also describes the charged Cooper pairs implicit in the Lon-
don theory of a superconductor well belowTC. In the super-
conductor analogy, the Gaussian curvature plays the role of a
(spatially varying) external magnetic field. For the problem
considered here, however, there are interesting new nonlinear
effects associated with spatial variations in the metric.

A detailed analysis of the free energy of Eq.(2) for a
bumpy surface with free and circular boundary conditions is
presented in Appendixes C and D. Here we only sketch the
main steps and conclusions. The free energy can be readily
converted into a Coulomb gas model by using the relation

gab]as]bu − Abd = ssud − Gsud ; nsud, s3d

wheregab is the covariant antisymmetric tensor,Gsud is the
Gaussian curvature, andssud;s1/Îgdoi=1

Nd qidsu−uid is the
disclination density withNd defects of chargeqi at positions
ui. The final result is an effective free energy whose basic
degrees of freedom are the defects themselves[16,21]:

F =
KA

2
E dAE dA8nsudGsu,u8dnsu8d, s4d

where nsud is defined in Eq.(3). The Green’s function
Gsu ,u8d is calculated(see Appendix A) by inverting the La-
placian defined on the surface

Gsu,u8d ; − S 1

D
D

uu8
, s5d

and we have suppressed for now defect core energy contri-
butions which reflect the physics at microscopic length
scales. Equation(4) can be understood by analogy to two-
dimensional electrostatics, with the Gaussian curvatureGsud
(with sign reversed) playing the role of a nonuniform back-
ground charge distribution and the topological defects ap-
pearing as pointlike sources with electrostatic charges equal
to their topological chargeqi. As a result, the defects tend to
position themselves so that the Gaussian curvature is
screened: the positive ones on peaks and valleys and the
negative ones on the saddles of the surface. However, this
analogy does neglect position-dependent self-interactions
[30], but since these are quadratic in the charge they are
negligible for hexatics. Hence positive disclinations of mini-
mal topological chargeqi =2p /6 continue to be attracted to
positive curvature(see Appendix C).
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More generally, we can considerp-fold symmetric order
parameters with minimum charge defects ±2p /p. The case
p=1 corresponds to tilt order of absorbed molecules andp
=2 describes two-dimensional(2D) nematics. The casesp
=4 and p=6 describe tetradic and hexatic phases, respec-
tively [29]. Strictly speaking, Eq.(1) describes only the cases
p=1 andp=2 in the one-Frank-constant approximation[24].
Most of our discussion focuses on topography-driven transi-
tions on a model surface shaped like a bell curve or “Gauss-
ian bump”(see Fig. 1), but the same mathematical approach
can be readily carried over to study arbitrary surfaces of
revolution that are topologically equivalent to the plane. Fur-
thermore, we do not expect the results of this analysis to
depend qualitatively on the azimuthal symmetry of the sur-
face, which is assumed purely for reasons of mathematical
convenience.

Points on our model surface embedded in three-
dimensional Euclidean space are specified by a three-
dimensional vectorRsr ,fd given by

Rsr,fd = 1 r cosf

r sinf

h exps− r2/2r0
2d
2 , s6d

wherer andf are plane polar coordinates in thexy plane of
Fig. 1. It is useful to characterize the deviation of the bump
from a plane in terms of a dimensionless aspect ratio

a ;
h

r0
. s7d

The two orthogonal tangent vectorst r ;]R /]r and tf

;]R /]f can be normalized to define the vierbein(orthonor-
mal basis vectors) Er andEf, respectively. The components
of the spin connection introduced in Eq.(2) are given by

Aa=Er ·]aEf [26,28]. This leads to a vanishing radial com-
ponentAr and

Af = −
1

Îlsrd
, s8d

where the importanta-dependent functionlsrd (see Fig. 2) is
defined by

lsrd ; 1 +
a2r2

r0
2 expS−

r2

r0
2D , s9d

and it is equal to the radial component of the diagonal metric
tensorgab,

FIG. 1. (Color online) (a) The vector fieldn is confined to a surface shaped as a Gaussian.(b) Top view of (a) showing a schematic
representation of the positive and negative Gaussian curvature as a background “charge” distribution that switches sign atr =r0. Note that,
according to the electrostatic analogy, a positive(negative) distribution of Gaussian curvature corresponds to negative(positive) topological
charge density.

FIG. 2. Plot oflsr / r0d as a function of the dimensionless radial
coordinater / r0 for a=1,2,3,4. Thearrow is oriented in the direc-
tion of increasinga.
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gab = Slsrd 0

0 r2D . s10d

Note that thegff entry is equal to the flat space resultr2 in
polar coordinates whilegrr = lsrd is modified in a way that
depends ona but tends to the plane resultgrr =1 for small
and larger, as illustrated in Fig. 2.

The Gaussian curvature for the bump is readily found
from the eigenvalues of the second fundamental form[31],

Gasrd =
a2e−r2/r0

2

r0
2lsrd2 S1 −

r2

r0
2D . s11d

Note thata controls the order of magnitude ofGsrd and that
Gsrd changes sign atr =r0 [see Fig. 1(b)]. The integrated
Gaussian curvatureDGsrd inside a cup of radiusr centered
on the bump is

DGsrd = 2pS1 −
1

Îlsrd
D , s12d

which vanishes asr →`. Equation(12) also shows that the
positive Gaussian curvature enclosed within the radiusr0
(see Fig. 1) approaches 2p for a@1, half the integrated
Gaussian curvature of a sphere.

B. Defect-free texture

For small values of the aspect ratioa, the minimal energy
texture for the hexatic will be free of defects. The ground
state configurationu0sud satisfies the differential equation

DaDau0 − DaAa = 0, s13d

which results from minimizing the free energy in Eq.(2)
with respect to the fieldusud for fixed Aa. When expressed in
terms of the coordinates in Eq.(6), the solution of Eq.(13)
reads

u0sud = − f + c, s14d

where c is an arbitrary constant. The smooth ground state
texture is thus obtained if the directorn forms an angle
u0sud=−f+c with respect to the spatially varying basis vec-
tor Er. Note that a solution of the formu0sud=c represents a

defect of chargeq=2p in this “rotating” system of coordi-
nates.

As an illustration, consider the projection on the plane of
the minimal energy texture of anXY modelsp=1d as shown
in Fig. 3. The arrows represent the orientation of tilted mol-
ecules on this surface in the one-Frank-constant approxima-
tion. The field clearly displays strong frustration along a di-
rection determined by the choice of the constantc in Eq.
(14). If the bump is positioned within two very distant walls
parallel to they axis which impose tangential boundary con-
ditions on the molecular tilts, the “preferred” direction will
be alongŷ.1 The texture displayed in Fig. 3 can be inter-
preted as resulting from embryonic pairs of defect dipoles
along the linex=0. The distortion energyF0 of this ground
state is given by

F0 =
1

2
KAE dA gabs]au0 − Aads]bu0 − Abd. s15d

This expression can be evaluated for an infinitely large sys-
tem by using Eq.(14) and the explicit form of the spin con-
nection derived in Sec. II A, with the result

F0 = pKAE
0

`

dr
f1 −Îlsrdg2

rÎlsrd
. s16d

It follows from Eq. (16) that the ground state energy is a
monotonically increasing function of the aspect ratio, propor-
tional toa4 for smalla. As we shall see, for large enougha,
it can be energetically preferable to reduce this energy by
introducing defect pairs into the texture. It is convenient to
rewrite Eq.(15) in terms of the Gaussian curvatureGsrd and
the Green’s functionGsu ,u8d discussed in Appendix A[26]

1In casedistantwalls are present, the free solution of Eq.(14) is
slightly modified to account for the new boundary conditions. This
is accomplished by the method of images or conformal transforma-
tions [32].

FIG. 3. Projected ground state texture for an
XY model on the bump, with the boundary con-
dition that the vector field is parallel to they axis
at infinity. The two insets show the defect pairs
suggested by two regions of large frustration,
which lie close to a circle of radiusr0.
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F0 =
KA

2
E dAE dA8GsudGsu,u8dGsu8d. s17d

This result is what one obtains by setting allqi =0 in Eq.(4).
The details of the mathematical derivation are relegated to
Appendix C.

Although this result correctly represents the zero-
temperature limit of the vector model, corrections may be
appropriate to describe the physics of ordered phases at finite
temperature. “Spin-wave” excitations(i.e., quadratic fluctua-
tions of the order parameter about the ground state texture)
can be accounted for by integrating out the longitudinal fluc-
tuationsu8sud around the ground state configurationu0sud.
By letting u=u0+u8 in Eq. (2) and using Eq.(3) we obtain
[18,21]

F = F0 +
1

2
KAE dA gab]au8]bu8. s18d

The longitudinal variableu8sud appears only quadratically in
F and the trace overu8sud can be explicitly performed with
the result[33]

E Du8 expS−
bKA

2
E dA gab]au8]bu8D = e−bFL, s19d

whereFL is the Liouville action,

bFL = cE dA−
KA

24
E dAE dA8GsudGsu,u8dGsu8d.

s20d

The first term in this expression is a constant proportional to
the fixed surface area of the frozen topography and will be
suppressed in what follows. The remaining term causes a
shift in the coupling constant appearing in Eq.(17) from KA
to KA8 =KA−kBT/12p [18,21]. This “entropic” correction to
the coupling constantKA at finite temperature also arises
when defects are present.

The energy in Eq.(17) represents an intrinsic, irreducible
energy cost of geometric frustration for textures without de-
fects. As we shall see, defects can reduce this frustration.
However, for small values ofa the energy cost of this frus-
tration will still be lower than the core energies associated
with the creation of the unbound defects and the work nec-
essary to tear them apart.

C. Energetics of defect pairs on a Gaussian bump

A quantitative understanding of the energetics of defects
on a fixed topography is essential to calculate the critical
value(s) of the aspect ratio above which defect unbinding
becomes energetically favorable. The first step is to calculate
the Green’s functionGsu ,u8d that governs the “Coulombic”
interaction among defects and between each defect and the
Gaussian curvature. The inversion of the curved space La-
placian can be more easily accomplished by employing a set
of “isothermal coordinates,” such that the resulting Green’s
function reduces to the familiar logarithm of two-
dimensional electrostatics. As shown in Appendix A the final

result in terms of the original polar coordinates reads

Gsu,u8d = −
1

4p
lnfRsrd2 + Rsr8d2

− 2RsrdRsr8dcossf − f8dg + c, s21d

where the functionRsrd can be thought of as a radial coor-
dinate in the conformal plane resulting from adopting an
isothermal set of coordinates(see Appendix A)

Rsrd = r expS−E
r

` dr8

r8
fÎlsr8d − 1gD , s22d

and lsrd is the a-dependent function introduced in Eq.(9).
The constantc depends on the physics at short distances,
which is discussed in Appendix A.

The Green’s function in Eq.(21) corresponds to free
boundary conditions at infinity and preserves the cylindrical
symmetry of the metric. It differs from the familiar result in
flat space by a nonlinear radial stretch corresponding to a
smooth deformation of the bump into a flat disk. This
Green’s function determines an attractive interaction for the
defect-dipole pair. However, the Gaussian curvature of the
bump also generates a geometric potential that tries to pull
the disclination dipole apart. This geometric interaction
arises by combining cross terms betweenssud and Gsud in
Eq. (4) with the position-dependent self-interactions derived
in Appendix C. The resulting interactionFG between defects
and the Gaussian curvature takes the simple form

FG = KAo
i=1

Nd

qiS1 −
qi

4p
DVsuid, s23d

where the geometrical potentialVsud is defined as

Vsud ; −E dA Gsu8dGsu,u8d. s24d

The minus sign in front of this geometric potential ensures
that defects of topological charge between zero and 4p are
attracted by regions of positive Gaussian curvature[30]. For
defects with a large topological charge ofq.4p, the sign of
the geometric interactionFG is reversed and defects of either
sign are pushed away from the bump. This scenario does not
affect the geometry-driven defect formation discussed in this
paper that relies on disclinations whose charge is well below
4p. However, as a result of the position-dependent self-
interactions,FG is no longer symmetric under the changeq
→−q, as one would expect on the basis of the electrostatic
analogy. The effect of this asymmetry is small for hexatic
order but it increase for liquid crystals withp-fold order
parameter, asp decreases(see Ref.[30], and references
therein).

Gauss’ law generalized to curved surfaces(see Appendix
B) ensures that the geometric force experienced by a defect
of chargeq with radial coordinater will be determined only
by the net curvature enclosed in a circle of radiusr centered
on the top of the bump. The resulting “electric field” is radial
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as expected from electrostatics and is proportional to the gra-
dient of the geometric potential, which for a Gaussian bump
takes the form(see Appendix B)

Vsrd = −E
r

` dr8

r8
fÎlsr8d − 1g. s25d

For small values of the aspect ratioa the potential in Eq.
(25) can be approximated by

Vsrd < −
a2e−r2/r0

2

4
. s26d

The resulting force is linear for smallr (i.e., near the top of

the bump) and decays likee−r2/r0
2

for r @ r0. As the aspect
ratio a increases, the force generated by the curvature can
overcome the attractive force binding the defect pair which
varies logarithmically for short distances. As a result, oppo-
sitely charged defects that were originally tightly bound can
be separated.

This argument, however, neglects another complication
resulting from the curvature of the surface: as the aspect ratio
is increased, the Green’s functionGsu ,u8d in Eq. (21) and
hence the force binding the defects togetheralso increases.
We illustrate this point in Fig. 4 for the special case of a
positive defect pinned right on top of the bump and a nega-
tive one free to move downhill atr. Upon invoking Eqs.(4)
and(21), the potential binding the pair,Vpairsrd, can be writ-
ten down exactly as

Vpairsrd =
KAq2

2p
lnS r

a
D + 2q2Ec −

KAq2

2p
E

r

` dr8

r8
fÎlsr8d − 1g.

s27d

The first term is the flat space Green’s function and we have
added two disclination core energies. The last term repre-
sents a “curvature correction” that has the same functional
form of the geometric potential in Eq.(25), but it represents
a distinct contribution to the total free energy. As discussed
in Appendix B, the pair potential energyVpairsrd can be un-

derstood by applying a generalized Gauss’ law to the bump
to determine a force which is equal to −q2/2pr. The poten-
tial follows by integrating this force along the bump with the
length elementdrÎlsrd.

Although the force is independent of the aspect ratio, the
length element grows witha (see Fig. 4), which makes the
pair more energetically bound for larger values ofa. A care-
ful calculation of these effects(including the contribution
associated with the position-dependent self-energies) reveals
that the geometric force still overcomes the binding interac-
tion for sufficiently large values ofa.

An estimate of the critical value ofa for which the dipole
unbinds can be obtained by comparing the minimal free en-
ergy of the smooth frustrated field arising from Eq.(17) with
the free energy in the presence of defects. The latter, as fol-
lows from Eq.(4), is composed of three contributions: the
interactions among the defects, the interaction between the
defects and curvature as given by Eq.(23), and the Gaussian
curvature self-interaction. The latter is equal to the minimal
free energy of the smooth frustrated field and is renormalized
at finite temperature in the same way.(Associated with the
cutoff is a microscopic core energyEc that we expect to be
independentof the defect position on the bump, as long as
the radius of curvature is much greater than any microscopic
length scale.) The remaining two contributions are not renor-
malized by thermally induced spin wave fluctuations[21]. As
shown in Appendix C, the difference in free energy of a
defected texture described by Eq.(4) relative to the defect-
free result Eq.(17) can be written as

DFsad
KA

=
1

2o
i=1

Nd

o
jÞi

Nd

qiqjGasr i,fi,r j,f jd + o
i=1

Nd

qiS1 −
qi

4p
DVsr id

+
Ec

KA
o
i=1

Nd

qi
2, s28d

where we have assumed overall charge neutrality for the de-
fect configuration. The subscript inGa indicates that a con-
stant microscopic core radiusa has been absorbed in the
definition of the Green’s function so that the argument of the
logarithm in Eq. (21) becomes dimensionless, as in Eq.
(C21),

Gasr i,fi,r j,f jd = Gsr i,fi,r j,f jd +
1

2p
ln a. s29d

This microscopic cutoffa corresponds to a constant core
radius for each defect and it is of the order of the spacing
between the microscopic degrees of freedom. The sum of
microscopic core energies in the fourth term of Eq.(28)
needs to be fixed phenomenologically or from models that go
beyond simple elasticity theory[34]. Note that both
Gasr i ,fi ,r j ,f jd and Vsrd depend ona. If a becomes suffi-
ciently large so thatDF is less than zero, one or more dis-
clination dipoles unbind in the hexatic phase at a sequence of
critical valuesaci

. The analogous defects inXY-model tex-
tures of tilted liquid crystal molecules would be +/− vortex
pairs.

FIG. 4. Effect of changing the aspect ratio of the bump on the
work needed to pull apart two oppositely charged defects. Positive
and negative defects are represented by open circles with their sign
printed. The line elements corresponding to the projected lengthdr
for the two aspect ratios are shown.
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III. CURVATURE-INDUCED DEFECT GENERATION

A. Onset of the defect-dipole instability

If a dipole is created, say, along the liner =r0 of zero
Gaussian curvature, the positive disclination will be pulled
toward the center by the positive curvature while the nega-
tive one will be repelled into the region of negative curva-
ture.

The net result is a reduction of the total free energy of the
order of the depth of the potential well since the logarithmic
binding energy is approximately constant compared to the
geometric potential. An approximate analytical treatment is
obtained by assuming that the positive defect sits right at the
center of the bump and the negative one at a distance of the
order ofr0. The validity of this approximation scheme can be
checked by numerically minimizing the energy with respect
to the position of the defects, as discussed in Sec. III B. We
assume charge neutrality so that the two defects have equal
and opposite topological charges of magnitudeq. For order
parameters with ap-fold symmetry, the minimal topological
charge isq=2p /p. The approximate free energy cost to gen-
erate this defect pair then follows from Eqs.(25), (27), and
(28):

DFsad
KA

<
q2

2p
FlnS r

a
D + VsrdG + qS1 −

q

4p
DVs0d

− qS1 +
q

4p
DVsrd + 2q2 Ec

KA
. s30d

The internal consistency of the formalism can be checked by
investigating the limit r →a. As the negative defect ap-
proaches the positive one at the center of the bump, we have
Vsad<Vs0d and the energy tends to the expected flat space
result 2q2Ec.

The equilibrium position of the negative defect turns out
to be forr equal to a fewr0, so the terms containingVsrd in
Eq. (30) can be dropped as a first approximation because
Vsrd decays exponentially(see Fig. 5):

DFsad
KA

<
q2

2p
lnS r

a
D + qS1 −

q

4p
DVs0d + 2q2 Ec

KA
. s31d

To estimate the critical value of the aspect ratio for which the
first dipole unbinds, letr , r0 and solve forac in Eq. (31).
Because a different choice for the core energyEc can be
accounted for by rescaling the core sizea in Eq. (31), the
condition for unbinding is

uVs0du .
2q

s4p − qd
lnS r0

a8
D s32d

with

a8 = ae−4pEc/KA. s33d

If we know Ec/KA and r0/a, the critical aspect ratioac can
be obtained from inspection of Fig. 6 whereVs0d is plotted
as a function ofa.

The Taylor expansion ofVsrd derived in Eq.(26) gives
Vs0d<−a2/4 to leading order ina. Inspection of Fig. 6
shows that this approximation works sufficiently well even
for aspect ratios of order unity. Upon substituting forVs0d
into Eq. (32), we obtain an estimate of howac depends on
r0/a8:

ac
2 <

8q

s4p − qd
lnS r0

a8
D <

8q

s4p − qdFlnS r0

a
D +

4pEc

KA
G .

s34d

Note that a critical heighthc=acr0 for defect unbinding is
predicted for fixedr0/a8 with defect chargeq=2p /p for all
integer values ofp. The validity of this approximate relation
is tested in Sec. III B.

The continuum theory adopted here is valid in the limit
r0@a. If Ec can be neglected compared toKA, the defect-
unbinding instability is triggered when the energy gain de-
rived from letting the defects screen the Gaussian curvature
[approximately given byqVs0d] overcomes the work needed
to pull them apart a distancer0. This work, of order
sq2/2pdlnsr0/ad, increases very slowly with larger0/a,
hence the continuum approximation can be satisfied while

FIG. 5. Geometric potentialVsr / r0d as a function of the dimen-
sionless ratio ofr and r0 for a=1, 2, 3, 4, 5. Note thatuVsrdu
! uVs0du for r * r0. The arrow points in the direction of increasing
a.

FIG. 6. Plot of the geometric potential evaluated at the center of
the bump,Vs0d, for aspect ratiosa between 0 and 5. The continuous
line is plotted using the exact form ofVsrd while the dashed line is
obtained from the low-a expansion given in Eq.(26).
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keeping the work finite. Note that the result does not depend
on the size of the systemR because we assume overall dis-
clination charge neutrality and the assumption thatR@ r0. In
this limit, boundary effects can be ignored provided that they
do not impose a topological constraint on the phase of the
order parameter. An aligning outer wall in a circular hexatic
sample, for example, would force the bond-angle field to
rotate by 2p, leading to six defects in the ground state even
in flat space. The interesting physics which results is ad-
dressed in Sec. IV.

B. Numerical investigation of defect-unbinding transitions

The disclination-unbinding transitions can be investigated
more quantitatively by minimizing numericallyDFsad in Eq.
(28) with respect to the positions of the defects. The aspect
ratio above whichDFsad becomes negative corresponds to
the threshold valueac (analogous to a first order transition)
for which the singular field is energetically favored with re-
spect to the smooth texture of Fig. 3. We emphasize that the
energy landscape can have two minima. The first occurs
when two oppositely charged defects form a closely bound
dipole (with separation of the order of the cutoffa) and
hence annihilate each other leaving a smooth texture. The
second minimum corresponds to an unbound pair(with sepa-
ration of a few r0) and it disappears when the geometric
force is too weak to overcome the binding force of the pair.
This scenario occurs for afinite value ofa characteristic of
the geometry of the substrate above which the formation of
an unbound dipole is possible, albeit energetically unfavored
(see Fig. 7).

As a is increased aboveac, the smooth-texture minimum
becomes metastable and the unbinding of a defect pair is the
most likely scenario.

It is useful to parametrizeDFsad in terms of the dimen-
sionless radial coordinatesr̄ i ; r i / r0. The geometric potential

is defined in Eq.(A9) as a function ofr̄ i, Vsrd; Ṽasr / r0d,
where

Ṽasxd = −E
x

` dy

y
fÎ1 + a2y2 exps− y2d − 1g . s35d

In order to write the defect-defect interaction in terms of the
dimensionless radial coordinater̄ i, we introduce a new func-

tion R̃sr̄ id defined by

R̃sr̄ id ;
r i

r0
expfVsr idg =

r i

r0
expFṼaS r i

r0
DG =

Rsr id
r0

,

s36d

where Eq.(A8) was used in the last step. We can now trans-

form Gasr̄ i ,fi , r̄ j ,f jd by eliminatingRsr id in favor of R̃sr̄ id.
Thus we have using Eqs.(C21) and (A12)

− o
jÞi

Nd

qiqjGasr i,fi,r j,f jd = − o
jÞi

Nd

qiqjGsr̄ i,fi, r̄ j,f jd

+
1

2p
o
i=1

Nd

qi
2 lnS r0

a
D , s37d

where we have exploited charge neutrality and Eq.(C22).
The free energy minimized with respect to the positions of
the defects, minfDF /KAg, can now be written, according to
Eq. (28), as

minFDF

KA
G = fsad +

1

4p
o
i=1

Nd

qi
2 lnS r0

a8
D , s38d

where

fsad ; minF1

2o
jÞi

Nd

qiqjGsr̄ i,fi, r̄ j,f jd + o
i=1

Nd

qiS1 −
qi

4p
DVsr̄ idG .

s39d

Note that in the second term in Eq.(38) the core energy of
each defect has been absorbed in the modified core radiusa8,
as defined in Eq.(33). This generates an energy cost for
unbinding that can be overcome iffsad assumes sufficiently
large negative values. Hence it is sufficient to study numeri-
cally how DFsad varies as a function of a single parameter,
e.g.,r0/a8. As an illustration of this approach, we study ex-
plicitly the unbinding of one and two disclination pairs lead-
ing to the ground states represented schematically in Fig. 8.

The smooth ground state becomes unstable to the forma-
tion of one defect dipole first. The critical aspect ratio above
which this scenario occurs can be determined with the aid of
Fig. 9, where the functionfsad introduced in Eq.(39) is
plotted as a function of the aspect ratio. From Eq.(38) we
see thatac1 is determined by

FIG. 7. Plot of DF /KA versusx1 and x2, the positions of the
negative and positive defects, respectively, in units ofr0, for a
=1.2. A constant energy offset equal to −sq2/2pdlnsr0/a8d has been
neglected. The metastable minimum atx1.1.3r0 and x2.0.2r0

corresponds to an unbound pair[see Fig. 8(a)]. As a is decreased
further the energy barrier that separates this minimum from the
smooth texture solution(corresponding tox1 approachingx2) dis-
appears and the two opposite defects annihilate.
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fsac1
d = −

q2

2p
lnS r0

a8
D . s40d

For r0/a8=104 andq=2p /6, we obtain a critical aspect ratio
ac1

<3.2. As a comparison, the approximate condition de-
rived in Eq.(32) givesac1

<3 when used in conjunction with
Fig. 6. The rougher estimate in Eq.(34) leads(for q=2p /6)
to ac1

<2.6. This discrepancy is easily understood consider-
ing that Eq.(34) was derived by means of a low-a expan-
sion.

The critical aspect ratioac1
is too low for the two-dipole

defect configuration to become energetically favorable with
respect to the smooth ground state. Indeed, inspection of Fig.
10 reveals that the critical aspect ratioac2

for which the

“two-dipole instability” sets in is approximately equal to 3.6
for the same choice of parameters used in the single-pair
case. Note that, in the presence of two dipoles, the energy
cost arising from the second term in Eq.(38) is twice as large
because there are four defects rather than two. However, for
a*4.2, generating two dipoles becomes more energetically
favored than a single dipole(see Fig. 11). The approach il-
lustrated here can be used to calculate a cascade of defect-
unbinding instabilities at critical aspect ratiosaci

involving
higher number of dipoles and their equilibrium configura-
tions in the ground state. Note that the unbinding eventually
stops since the integrated Gaussian curvature in the top cup
cannot exceed 2p. We expect the qualitative features of our
analysis to be independent of the exact shape of the bumpy
substrate although the specific valuesaci

depend on the ge-
ometry and the choice of the microscopic parametersa and
Ec. Finally, we emphasize that the curvature-induced unbind-
ing is similar to a first order transition and occurs for rather
pronounced deviations from flatness(i.e., largea).

FIG. 8. The equilibrium defects positions are illustrated sche-
matically in the case of one(a) and two(b) dipoles. We assume free
boundary conditions at infinity, as in Fig. 3, so that the effect of
image charges can be neglected.

FIG. 9. Plot of fsad versus the aspect ratioa obtained by mini-
mizing over the single-dipole defect configuration represented sche-
matically in Fig. 8(a). As discussed in the text, the first unbinding
transition occurs whenfsac1

d is equal to −q2/2plnsr0/a8d. The
value ac1 is indicated by the dashed line forr0/a8=104 and q
=2p /6. Note that no minimum(corresponding to an unbound pair)
exists fora less than 1(approximately); hence the curve cannot be
continued to the origin(see Fig. 7).

FIG. 10. Plot of fsad versus the aspect ratioa obtained by
minimizing the two-dipole defect configuration represented sche-
matically in Fig. 8(b). The second unbinding transition occurs when
fsac2

d is equal to −sq2/pdlnsr0a8d. The valueac2
is indicated by the

dashed line forr0/a8=104 andq=2p /6 (compare with Fig. 9).

FIG. 11. Plot ofDFsad /KA versusa corresponding to a single
dipole (continuous line) and two dipoles(dotted line) for r0/a8
=104. The critical aspect ratiosac1

andac2
are indicated by dashed

lines. Note that the aspect ratio for which the two-dipole configu-
ration becomes energetically favored occurs fora.4.2.
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C. Single vortex instability

The unbinding of defect pairs may not be the most likely
scenario if the size of the systemR is sufficiently small. In
this case, the creation of a single vortex at the center of the
bump may become energetically favorable for lower aspect
ratios than required by the defect dipole instability. The
equation for the bond-angle fieldussud for a single defect of
chargeq at the center of the bump is given by

ussfd = S q

2p
− 1Df, s41d

where the bond angle is measured with respect to the rotating
basis vectors corresponding to the polar coordinates dis-
cussed in Sec. II B. Upon substitutingussfd in Eq. (2) and
subtracting the free energyF0 corresponding to the defect-
free texture we obtain

DFsad
KA

=
q2

4p
lnSRsRd

a
D + qS1 −

q

4p
DVs0d + q2 Ec

KA
,

s42d

whereEc was added by hand. The same result is obtained by
using the more general formalism developed in Appendix D.
Indeed, by letting the position of an isolated defect tend to
the center of the bump in Eq.(D24) we obtain the energy of
the singular field in the case of free boundary conditions and
the result matches Eq.(42). As discussed in Appendix D, a
defect located atr i is attracted to the boundary atR for free
boundary conditions. One can think of this interaction as
resulting from an image defect of opposite sign behind the
edge of the sample at positionr i8 such that the following
relation holds in terms of the conformal radiusRsr8d:

Rsr i8d =
RsRd2

Rsr id
. s43d

This result can be understood by analogy to the familiar
electrostatic problem of a charged line located a distancer i
from the center of a cylindrical grounded conductor whose
axis is parallel to it[35]. The analogy becomes precise if one
lets r i →Rsr id as explained in Appendix D.

If the geometric potential is not strong enough(as in the
flat space limita=0), the defect will migrate to the edge of
the sample and annihilate with its image leaving a smooth
field. On the other hand, when the aspect ratio is sufficiently
large, the defect can lower its energy by sitting at the center
of the bump. Comparison of Eq.(42) with Eq. (31) shows
that, unlessR@ r0, the energy of the single vortex instability
will be lower than or at least comparable to the unbinding of
a defect dipole. In fact, the thresholdas that a needs to
exceed to trigger the single defect instability is easily ob-
tained if the values of the geometric potential at the origin
are tabulated for different aspect ratios, as illustrated in Fig.
5. The condition for single vortex generation reads

uVs0du .
q

sq − 4pd
lnS R

a8
D . s44d

Using the same method adopted to derive Eq.(34) we obtain
an estimate of howas depends onR/a8 [compare with Eq.
(34)]:

as
2 <

4q

s4p − qd
lnS R

a8
D . s45d

The single vortex instability is reminiscent of vortex genera-
tion in rotating superfluid helium witha playing the role of
the angular speedV. For a volume of helium contained in a
cylindrical vessel of radiusR and rotating uniformly with
constant angular speed, the critical valueVc1

above which
defect generation occurs is given by[36]

Vc1
<

K

2pR2 lnSR

a
D , s46d

whereK=2p" /mHe is the magnitude of the quantum of cir-
culation anda the core radius.2 Note thatVc1

decreases asR
increases, unlikeas which diverges logarithmically. Thus,
the single defect instability studied here is a finite size effect.
In contrast, the disclination unbinding studied earlier in this
section does not depend on the system size because of charge
neutrality. Hence the thermodynamic limit can be safely
taken, provided the characteristic length over which the cur-
vature varies(i.e., r0) is not too large compared toa [see Eq.
(34)].

In considering the case of small system size, it is impor-
tant to keep in mind two assumptions implicit in the present
treatment. The radius of curvaturer0/a must be much larger
than the core radius everywhere for the continuum approach
to be valid, that is,r0@aa. Additionally, the Gaussian cur-
vature must be vanishingly small at the edge of the system
which requiresR to be larger than a fewr0.

D. Lattice of bumps, valleys, and saddle points

In some experimental realizations perhaps modeled on
those of Ref.[12] the topography will be periodic. In this
section we discuss qualitatively how the results described
above generalize to a two-dimensional lattice of bumps with
variable aspect ratio for both square and triangular lattices. A
more quantitative approach to this problem would involve
finding conformal set of coordinates for periodic boundary
conditions. This is possible in principle but more involved
since cylindrical symmetry is now lost. Nonetheless, the in-
tuition gained by studying the single bump allows us to make
some guesses for the ground state. We first note that the
geometric potential generated by the lattice of bumps is not
simply the superposition of results for single bump poten-
tials. This is caused by the nonlinear relation between the
surface height and the Gaussian curvature acting as a source
for the geometric potential. To explore this point further,
consider what happens when four bumps are placed at the

2A similar mechanism applies to superconductors in a uniform
magnetic field.
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vertices of a square. At the center of the square a minimum
of the height function occurs corresponding to anew region
of positive Gaussian curvature. This effect is particularly
acute for r0øL, whereL is the bump spacing. In general
interference between bumps creates a dual lattice of valleys.
A similar breakdown of the superposition principle arises for
triangular lattices.

As the aspect ratio of hilly landscapes such as those
shown in Fig. 12 is increased, defects can be created to
screen the Gaussian curvature. Their positions can be
guessed by considering a unit cell of the lattice such that the
integrated Gaussian curvature vanishes. For a square lattice,
we conjecture that the first topography induced transition is
associated with the appearance of positive defects at the top
of the bumps and negative ones halfway between them in the
vertical or horizontal direction(see Fig. 12). This twofold
degeneracy is compatible with the symmetry of the lattice
and analogous to the freedom in choosing the axis along
which the first disclination dipole appears on the single
bump. The negative defects are shared between two adjacent
cells while the positive ones are shared among four cells thus
ensuring overall charge neutrality. As the value ofa in-
creases even more, one might expect an additional positive
defect appears in the valley located at the center of each cell
and two additional negative defects shared with the adjacent
cells are created between the bumps at right angles to the
direction discussed above(see Fig. 12).

For the triangular lattice, we conjecture that the first tran-
sition corresponds to positive defects on top of the bumps
and negative ones between the bumps along one of the three
axis of symmetry of the unit cell. As the value of the aspect
ratio is increased, additional positive defects appear on the
six minima of the surface and negative ones are generated
along the remaining two axes of symmetry of the unit cell
(see Fig. 12). A simple count of the total defect charges en-
closed in the unit cell shows that this scenario also satisfies
the requirement of defect charge neutrality.

IV. DEFECT DECONFINEMENT

With potential experiments in mind[23], it is interesting
to consider the case of hexatic order on a bump encircled by
a circular wall of radiusR@ r0 which aligns the hexatic bond
angles. As a simple model, imagine an array of hexagons
which locally achieve a common orientation tangential to the
wall [see Fig. 18(b) below]. The hexatic order parameter will
thus rotate by 2p upon making a circuit of the wall, insuring
that at least six defects of “charge” 2p /6 must be included in
the ground state for all values of the aspect ratio. These
boundary-condition-induced defects will interact with the
Gaussian curvature of the bump and with the wall. TheNd
defects contribute large(constant) self-energies of the form
oi=1

Nd KAqi
2 lnsR/ad that dominate the total energy for suffi-

ciently large systems. Sinceoi=1
Nd qi must be equal to 2p, the

energy is minimized when the defects split up into the small-
est possible charges.

The equilibrium defect configuration must minimize the
free energy taking into account the confining potential gen-
erated by the Gaussian curvature and the interactions of the
defects with the boundary and among themselves. The repul-
sive force exercised by the wall on a defect located atRsr id
in the conformal plane can be computed by placing an image
defect of same charge outside the wall at position
RsRd2/Rsr id. The mathematics resembles the problem of
finding the magnetic field of a line current located at a given
distancer i from the center of a cylinder of high-permeability
material and whose radiusR is greater thanr i [35]. The anal-
ogy is complete upon performing the change of coordinates
r →Rsrd and identifying the gradient of the bond angle
]ausud with the magnetic field. This is explained in detail in
Appendixes C and D where we introduce a conjugate func-
tion xsud analogous to the vector potential that simplifies the
analysis of this problem. Thus, each of theNd defects will
also interact with an equal number of image defects. This
situation can be described mathematically by deriving an ap-
propriate Green’s functionGN that includes the images, as
discussed in Appendix D[see Eq.(D19)]. The resulting free
energyFN reads

FN

KA
=

1

2o
jÞi

Nd

qiqjG
Nsxi ;xjd + F0 + o

i=1

Nd

qiS1 −
qi

4p
DVsr id

+ o
i=1

Nd qi
2

4p
lnSRsRd

a
D − o

i=1

Nd qi
2

4p
lns1 − xi

2d , s47d

where F0 is defined in Eq.(17) and the Green’s function
GNsxi ;xjd is given by

FIG. 12. (Color online) (Top) Ground states for square(left) and
triangular(right) arrays of bumps. The first and second rows corre-
spond to moderate values of the aspect ratioa, respectively. For
simplicity, we assume thatr0, the bump width, is comparable to the
lattice spacing. Positive defects(red dots) “screen” regions of posi-
tive Gaussian curvature while negative ones(blue dots) are located
on the saddles of the “hilly” landscape.
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GNsxi ;xjd = −
1

4p
lnfxi

2 + xj
2 − 2xixjcossfi − f jdg

−
1

4p
lnfxi

2xj
2 + 1 − 2xixj cossfi − f jdg. s48d

The last term accounts for the interaction with the image
defects and the superscriptN indicates Neumann boundary
conditions on an appropriate potential function. Here, we use
scaled coordinates in the conformal planexi ;Rsr id /RsRd.
The interaction of the defects with the curvature is not af-
fected by the presence of the distant wall.

To provide an illustration of the combined effect of cur-
vature and boundary conditions on tangential vector order,
we first consider the simpler case of a nematic order param-
eter with periodicity equal top. This simplified model ne-
glects differences in the elastic constants for bend and splay
and does not incorporate any effect due to the uniaxial cou-
pling of the nematogens to the curvature. In this case, mini-
mization of the logarithmically diverging part of the free
energy[fourth term in Eq.(47)] suggests that there will be
only two disclinations of chargeq=p displaced along a ra-
dial direction[see Fig. 13(b)]. By applying Eq.(47), we can
parametrize the energy of the system in terms of the scaled
radial coordinatesx1 and x2 of the two disclinations. The
resulting energy landscape is plotted in Fig. 13(for a=2 and
R=7r0) and clearly reveals two minimal-energy configura-
tions. The first minimum corresponds to one disclination
confined at the top of the bump(slightly shifted from the
center) and the other at a radial distance approximately 70%
of R [see Fig. 13(b) bottom panel]. The second minimum
corresponds to a fully deconfined state with both disclina-
tions placed symmetrically at approximately 67% ofR (see

Fig. 13(b) top panel). As the aspect ratio is raised even fur-
ther, the saddle in the energy landscape of Fig. 13(a) be-
comes a minimum corresponding to a configuration in which
both disclinations are confined in the cup of positive Gauss-
ian curvature by the geometric potential.

As illustrated in Fig. 14, there is a critical value of the
aspect ratio,aD.1.5, above which it is energetically favor-
able for the system to have one disclination confined at the
top of the bump. Fora,aD the fully deconfined configura-
tion becomes energetically favorable, but the two minima
can still coexist. Asa is decreased even further, the repulsion
between the two disclinations overcomes the confining force
of the geometric potential and makes the second minimum in
Fig. 13(a) (corresponding to the partially confined configu-
ration) disappear altogether. This “spinodal point” occurs for
a<0.9 on the Gaussian bump. The specific values of the
critical aspect ratios are geometry dependent, but the generic
mechanism of deconfinement depends only on a large sepa-
ration of the length scalesr0 andR that control the interac-
tion with the curvature and the boundary respectively.

The analysis for the hexatic case is complicated by the
fact that more defect configurations are possible when six
defects are present. We start by noting that even in flat space
sa=0d there are two natural low-energy defect configurations
with high symmetry: the ground state corresponding to the
six defects sitting at the vertices of a hexagon and a higher-
energy state given by a pentagonal distribution of defects
with the sixth defect sitting at the center of the circular
sample[see Fig. 15(b)]. As the aspect ratio is raised, the
pentagonal arrangement becomes energetically favored since
it pays to have a defect confined in the(geometric) potential
well at the origin[see Fig. 15(a)]. To study the transition, it is
useful to derive expressions for the energy of the two defect
configurations as a function of the radius of the outer defect
ring r. Every defect(except the one at the origin, possibly)
has the same scaled coordinatexi =x and the angles between
two defects are integer multiples of 2p /n where n is the
number of defects in the outer ring(n=5 for the pentagon
andn=6 for the hexagon). In this case, the sums involved in

FIG. 13. (a) The free energy for a nematic(double headed vec-
tor field) living on a Gaussian bump surrounded by an aligning
circular wall is plotted fora=2 as a function of the scaled radial
coordinatesx1 and x2 of the two disclinations. The radial coordi-
nates have been scaled byr0 and the size of the system isR=7r0.
Note that the energy plot is symmetric with respect to the linex1

=x2. (b) Schematic illustration of the positions of the two disclina-
tions (black dots) corresponding to the deep energy minima at po-
sitionsx1=0.04 andx2=4.9 (or vice versa) and to a shallow mini-
mum atx1=x2=4.7. The two defects are on opposite sides of the
bump. The continuous line corresponds to the circular boundary and
the dashed one to the circle of zero Gaussian curvature and radiusr0

(drawing not to scale).

FIG. 14. Plot of the free energy of a nematic(double headed
vector field) on a Gaussian bump encircled by an aligning wall as a
function of a. The dotted line represents the energy of the fully
deconfined configuration in Fig. 13(b) top panel while the continu-
ous line corresponds to the defect pattern illustrated in the bottom
panel of Fig. 13(b). The energy of the fully deconfined configura-
tion is approximately independent ofa because the two disclina-
tions are far away from the bump.

V. VITELLI AND D. R. NELSON PHYSICAL REVIEW E 70, 051105(2004)

051105-12



the first (interaction) term in Eq. (47) can be efficiently
evaluated using the following identity:

1

2o
i

n−1

lnFp2 + 1 − 2p cosS2pi

n
DG = lns1 − pnd − lns1 − pd.

s49d

Upon using Eq.(49) with p=1 and p=x2 to evaluate the
sums arising from the first and the second terms of the
Green’s function in Eq.(48), respectively, we obtain the free
energyFH for the hexagonal configuration:

FHsad
KA

= −
p

6
lnFS Rsrd

RsRd
D5

− S Rsrd
RsRd

D17G −
p

6
ln 6

+
11p

6
Vsrd +

p

6
lnFRsRd

a
G . s50d

The free energy for the pentagonal configurationFP is
readily obtained after similar manipulations:

FPsad
KA

= −
5p

36
lnFS Rsrd

RsRd
D6

− S Rsrd
RsRd

D16G −
p

2
ln 2

+
11p

36
Vs0d +

55p

36
Vsrd +

p

6
lnFRsRd

a
G . s51d

Note that these manipulations are very similar to the ones
necessary to describe superfluid helium in a cylinder of ra-
dius R [37]. In fact, the superfluid problem is analogous to
the case of hexatic order withfree boundary conditions on a
circular boundary of radiusR (see Appendix D). The rather
unusual form of the argument of the logarithm in Eqs.(50)
and (51) arises from the sum over the image defects whose
positions depend nonlinearly on the position of the defects
themselves.

Minimization of Eqs.(50) and(51) with respect tor fixes
the distance of the outer defects. The resulting minimal en-
ergiesFP andFH are plotted as functions ofa in Fig. 15(a).

For the critical valueaD, FP,FH can be easily estimated
by realizing thatFH is approximately independent ofa be-
cause the disclinations are far from the bump. On the other
end, FP decreases with increasinga because the confined

disclination is trapped in a potential well whose depth is
approximately given by −11

144pa2 [see the second term of Eq.
(51) and the lowa expansion forVs0d derived in Eq.(26)].
The critical aspect ratioaD for which the deconfinement
transition occurs can be estimated by setting the depth of this
potential well equal to the energy difference between the
hexagon and pentagon configurations in flat space. The latter
can be read off from the energy diagram in Fig. 15(a) and the
result is approximately 0.3KA which leads toaD,1.1 in
agreement with the value indicated in Fig. 15(a).

As the aspect ratio is raised even further, less symmetric
defect configurations become energetically favored corre-
sponding to a larger number of disclinations confined in the
cup of positive Gaussian curvature. For example, when two
disclinations are confined withinr =r0, the outer defect ring
is given by four defects approximately located at the vertices
of a square. We note that these defect configurations cease to
exist at low aspect ratios because they require the geometric
potential to overcome the strong repulsive interaction be-
tween the confined defects. As discussed earlier for Fig. 14,
the actual values of the aspect ratios involved depend on the
specific geometry of the substrate. However, the basic
mechanism behind the deconfinement transition is more gen-
eral.

Note that, asa increases, the geometric mechanism of
defect-dipole unbinding discussed in the last section may
also set in. Because of the presence of one or more positive
defects at the top of the bump, the critical aspect ratio nec-
essary to unbind one dipole will be larger than what was
calculated before. If dipole unbinding does occur, the new
defects will “decorate” the existing patterns by adding new
positively charged disclinations in the region of positive
Gaussian curvature and expelling the negative ones in the
external region of the bumpsr . r0d where the Gaussian cur-
vature is also negative(see Fig. 1).

V. CONCLUSION

We have discussed how the varying curvature of a surface
such as a “Gaussian bump” can trigger the generation of
single defects or the unbinding of dipoles, even if no topo-
logical constraints or entropic arguments require their pres-
ence. This mechanism is independent of temperature if the
system is kept well below its Kosterlitz-Thouless transition
temperature. It would be interesting to revisit Kosterlitz-
Thouless defect-unbinding transitions on surfaces of varying
Gaussian curvature in the presence of a quenched topography
[13] in the light of the present work. One might also explore
the dynamicsof the delocalization transition that occurs
when a bump is confined by a circular edge and the aspect
ratio is lowered until the defects, initially confined on top of
the bump by the geometric potential, are forced to “slide”
toward the boundary. Quantitative studies of periodic ar-
rangements of bumps would be interesting and could be in-
spired by fruitful analogies with methods and ideas from
solid state physics.

We also hope to extend this work by considering crystal-
line order on bumpy topographies and taking explicitly into
account the screening of clouds of dislocations and possible

FIG. 15. Plot of the free energy of a hexatic phase(draped on
the Gaussian bump encircled by a wall) as a function ofa. The
dotted line represents the energy of the hexagonal configuration
illustrated in the top panel on the left while the continuous line
corresponds to the pentagonal arrangement in the bottom panel. The
outer defect rings in both configurations are approximately 90% of
R. The critical aspect ratioaD corresponding to the deconfinement
transition discussed in the text is indicated by the dashed line.
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generation of grain boundaries[16]. Such an analysis would
facilitate comparison with experiments performed with a
single grain of block copolymer spherical domains3 on a suit-
ably patterned substrate[12,23].
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APPENDIX A: GREEN’S FUNCTION
AND ISOTHERMAL COORDINATES

The analysis of ordered phases on curved substrates can
be simplified by rewriting the original metric of the surface
gabsud in terms of a convenient set of coordinatesxsud
=(xsud ,ysud) such that the new metricg̃absxd reads

g̃absxd = ersx,yddab. sA1d

The metricg̃ab differs from the flat space onedab only by a
conformal factorersx,yd that embodies information on the cur-
vature of the surface[31]. Theseisothermal coordinatescan
be used to map arbitrary corrugated surfaces onto the plane
[38]. The mapping is conformal so angles are left unchanged
but areas are stretched according to the position-dependent
conformal factorersx,yd. A familiar example is provided by
the stereographic projection that maps a sphere onto the con-
formal plane as illustrated in Fig. 16.

The Green’s function assumes a very simple form after a
conformal transformation, because the Laplace operator re-
duces to the familiar flat space result when expressed in
terms of isothermal coordinates. In what follows, we demon-

strate that this transformation provides the basis for an effi-
cient strategy to determine the Green’s function on a bumpy
substrate. We start by deriving the radial change of coordi-
natesRsrd that transforms the original metric of the Gauss-
ian bump, i.e.,

ds2 = S1 +
a2r2

r0
2 e−r2/r0

2Ddr2 + r2df2, sA2d

into the locally flat metric(in polar coordinates),

ds2 = ersrdsdR2 + R2df2d, sA3d

wherersrd andRsrd are independent of the azimuthal coor-
dinate f because of cylindrical symmetry. This metric is
equivalent tog̃absxd upon switching from Cartesiansx,yd to
polar coordinates(Rsrd ,f). To simplify the notation we in-
troduce thea-dependent functionlsrd defined by

lsrd ; 1 +
a2r2

r0
2 expS−

r2

r0
2D , sA4d

and plotted in Fig. 2 for different choices ofa.
The equivalence of the metrics in Eq.(A2) and (A3) re-

quires thatRsrd satisfy the differential equation

dR

R
=

Îlsrd
r

dr. sA5d

The conformal factor is thus given by

ersrd = S r

R
D2

. sA6d

The solution of Eq.(A5) is

Rsrd = Ar expS−E
r

c dr8

r8
fÎlsr8d − 1gD , sA7d

where it is convenient to set the arbitrary constantsA andc
to unity and infinity, respectively. This nonlinear stretch of
the radial coordinate leaves the origin and the point at infin-
ity invariant and can be concisely written as

Rsrd = reVsrd, sA8d

where the functionVsrd defined by

Vsrd ; −E
r

`

dr8
Îlsr8d − 1

r8
, sA9d

plays an important role in our formalism and its interpreta-
tion as a sort of geometric potential is explored in detail in
Appendix B.

The Poisson equation for the Green’s functionGsu ,u8d on
a surface with metric tensorgab and point sourcedsu ,u8d
reads[26]

DaDaGsu,u8d = −
dsu,u8d

Îg
, sA10d

where the covariant Laplacian is given for general coordi-
nates by

3The radius of block-copolymer spherical cores is of the order of
a few nanometers and their spacing tens of nanometers. These val-
ues can be tuned by suitably choosing the block copolymers and
varying their volume fraction.

FIG. 16. Graphic construction of the stereographic projection.
Regions close to the north pole have larger images in the conformal
plane than regions of equal areas close to the south pole. The ste-
reographic projection preserves the topology of the surface pro-
vided all points at infinity are identified with the north pole.
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DaDa ; s1/Îgd]afÎggab]bg. sA11d

The conformal change of coordinates transformsÎgsr ,fd
into ersrdÎgsR ,fd and gabsr ,fd into e−rsrdgabsR ,fd. The
factors ofersrd inside the square brackets in Eq.(A11) then
cancel and we are left with the flat space Laplacian in the
polar coordinates(Rsrd ,f). We conclude thatGsu ,u8d is
simply the Green’s function of an undeformed plane ex-
pressed in terms of the polar coordinates(Rsrd ,f):

Gsu,u8d = −
1

4p
lnfRsrd2 + Rsr8d2 − 2RsrdRsr8d

3cossf − f8dg, sA12d

where an arbitrary additive constantC (which can be used to
satisfy boundary conditions at infinity) has been dropped. We
note thatGsu ,u8d differs from the flat space Green’s function
by a nonlinear stretch of the radial coordinate. In Appendix
C, we will useGsu ,u8d to solve Poisson’s equation on an
infinite bumpy domain and calculate the energy stored in the
field. As in flat space, the Green’s functionGsu ,u8d will be
suitably modified in a finite system in a way that depends on
the boundary conditions chosen at the edge of the sample
(see Appendix D).

We conclude this appendix by evaluatingGsu ,u8d when
the two pointsu and u8 are assumed to be separated by a
fixed distancea small enough so that the surface can be
approximated by the local tangent plane to the Gaussian
bump. This short distance behavior will be useful when
evaluating the effect of aconstantcore radius on the ener-
getics of a disclination at an arbitrary position. The fixed
microscopic lengtha on the bump is stretched when pro-
jected in the conformal plane(see, e.g., Fig. 16) and assumes
the position-dependent valuelsx,yd given by

lsx,yd = ae−rsx,yd/2. sA13d

For a Gaussian bump cylindrical symmetry requires that
lsr ,fd is dependent only onr and can be explicitly written
upon using Eqs.(A6) and (A8) as

lsr,fd = a
Rsrd

r
= aeVsrd. sA14d

We can now evaluateGsu ,u8d in the limit u8→u+a, where
this concise notation means that the two points on the surface
with coordinatesu and u8 are separated by an infinitesimal
distancea measured on the bump. It does not matter in what
direction the two points approach each other as long asa is
small compared to the local radii of curvature. Upon using
Eqs.(A12) and (A14), we obtain

Gsu,u + ad = −
1

4p
lnsa2d −

Vsrd
2p

. sA15d

We note thatGsu ,u+ad for fixed a is not a constant as in flat
space but varies with position as the functionVsrd, reflecting
the lack of translational invariance on an inhomogeneous
surface, where properties such as the Gaussian curvature also
vary with position.

APPENDIX B: GEOMETRIC POTENTIAL

In this appendix we present two equivalent ways of deter-
mining the explicit form of the geometrical potentialVsud
valid for azimuthally symmetric surfaces like the Gaussian
bump. The starting point is the general definition introduced
in Sec. II C:

Vsud ; −E dA8Gsu8dGsu,u8d, sB1d

with the Green’s functionG as defined in Eq.(A10). In the
electrostatic analogy,Vsud is thus the potential induced by a
continuous distribution of “charge” represented by the
Gaussian curvature(with sign reversed). We shall derive an
analogue of the Gauss law for corrugated surfaces where the
curvature of the surface(with sign reversed) plays the role of
a continuous density of electrostatic charge.

The first derivation makes use of the fact thatVsud is a
scalar under conformal transformations. This symmetry can
be checked explicitly by applying the same reasoning
adopted for the equation satisfied by the Green’s function in
Appendix A to Eq.(B1). In fact, upon operating on both
sides of Eq.(B1) with the covariant Laplacian and using Eq.
(A10), the defining equation for the geometric potential can
be cast into the differential form

DaDaVsud = Gsud. sB2d

The Gaussian curvature in Eq.(B2) can be written in confor-
mal coordinates[31] as

Gsx,yd = − e−rsx,yds]x
2 + ]y

2d
rsx,yd

2
, sB3d

wherersx,yd is the conformal factor introduced in Appendix
A. Similarly the left hand side of Eq.(B2) can be expressed
in conformal coordinates[31] as

DaDaVsxd = + e−rsx,yds]x
2 + ]y

2dVsx,yd. sB4d

Upon substituting Eqs.(B3) and (B4) in Eq. (B2), we con-
clude immediately that the geometric potential in conformal
coordinatesVsxd is given by

Vsx,yd = −
rsx,yd

2
. sB5d

Upon using Eqs.(A6), (A8), and (A9), to substitute in Eq.
(B5), one obtains the explicit form of the geometric potential
for the bump parametrized by the coordinatessr ,fd:

Vsrd = −E
r

`

dr8
Îlsr8d − 1

r8
, sB6d

where thea-dependent functionlsrd was defined in Eq.(A4)
and plotted in Fig. 2. The result of the integration in Eq.(B6)
is independent off because of azimuthal symmetry. The
upper limit of integration is chosen consistently with Eq.
(B2) as usually done in electrostatics.

A second derivation of this result is obtained by making
explicit use of the azimuthal symmetry of the bump and
deriving a covariant form of Gauss’ law which allows an
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intuitive understanding of the interaction between defects
and curvature. This curved space version of Gauss’ law illu-
minates the electrostatic analogy used throughout the text.
The gradient of the geometric potential defines an “electric
field” Ea given by

Ea ; − DaVsud =E dA8Gsu8dDaGsu,u8d, sB7d

where we have used Eq.(B1). One might expect that the flux
of the vectorEa through a closed loop is proportional to the
enclosed Gaussian curvature in analogy with Gauss’ law that
relates the flux of the electric field to the electrostatic charge
enclosed. To prove this assertion, we invoke the generalized
Stokes formula[26] that relates the surface integral overA of
the gradient of a field to its flux through the contour loopC:

E
A

dA DaEa = −R
C

duaga
bEb. sB8d

The covariant antisymmetric tensorgab is given by

gab = Îgeab, sB9d

where eab is the antisymmetric tensor witherf=−efr =1.
Similarly gab equalseab /Îg and the following identity holds
[21]:

gasgsb = − db
a. sB10d

The tensorga
b=gasgsb performs anticlockwise rotations of

p /2 when acting on an arbitrary tangent vectorVb, as can be
checked by evaluatingVaga

bVb=gabVaVb=0, where we
have used the antisymmetry ofgab. Thus, the vectorduaga

b

in Eq. (B8) represents an infinitesimal contour length times
the inward unit vector perpendicular to it. The dot product
with the fieldEb then generates the flux. To calculate the flux
piercing a circular circuit centered on a Gaussian bump, we
will need to explicitly evaluategf

r,

gf
r = −

r
Îlsrd

. sB11d

Upon using Eq.(B7) we can rewrite the left hand side of
Eq. (B8) as

E dA DaEa =E dAE dA8Gsu8dDbDbGsu,u8d.

sB12d

If we now recall the defining Eq.(A10) of the Green’s func-
tion Gsu ,u8d and keep in mind that the Laplacian in Eq.
(B12) operates on the variables labeled byu8 (not u), we
obtain using Eq.(B8) a general result for the flux piercing a
closed loop on the surface, namely,

R
C

duaga
bEb =E

A

d2uÎgGsud. sB13d

We can explicitely evaluate the right hand side of Eq.(B13)
with the aid of Eq.(12). By appealing to the cylindrical
symmetry, in the special case of the Gaussian bump one can
apply this covariant form of Gauss’ theorem to find the radial

field Ersrd in terms of the integrated Gaussian curvature di-
vided by the length of a boundary circle of radiusr, with the
result

Er =
1 −Îlsrd

rl srd
, sB14d

where we used Eqs.(A2) and(B11). The angular component
Ef is zero everywhere. Note thatErsrd vanishes linearly with

r for small r and decays likere−r2/r0
2

for r @ r0. From Eq.
(B14) one can obtain the geometric potentialVsrd by per-
forming a line integral,

Vsrd =E
r

`

dr8grrE
r = −E

r

`

dr8
Îlsr8d − 1

r8
, sB15d

which matches the result previously obtained in Eq.(B6).

APPENDIX C: FREE ENERGY
ON A CORRUGATED PLANE

In this appendix, we derive the effective free energy for a
charge neutral configuration of defects confined on an infi-
nite surface of varying Gaussian curvature with the topology
of the plane. A general method was introduced in Ref.[30]
that allows treatments of the more complicated case of de-
formed spheres. A detailed treatment of boundary effects is
developed in Appendix D. Here we simply assume that the
size of the system is much larger than the size of the bump
and that the boundary does not impose any topological con-
straint to the director of the liquid crystal. The results pre-
sented here match those obtained in Appendix D for free
boundary conditions, as long as the defects are far from the
boundary. Suppose that all theNd defects have the same
circular core radiusa which does not depend on where they
are located on the surface. This assumption is justified if the
radius of curvaturer0/a is much greater thana. In this limit,
the microscopic physics that determinesa is insensitive to
the presence of the curvature and since the bump is locally
flat a is approximately constant everywhere. The starting
point of our analysis is the free energy expressed in terms of
the singular part of the bond angleussud,

F =
1

2
KAE

S

dA gabs]aus − Aads]bus − Abd. sC1d

The cores of the defects are excluded from the area integral
in Eq. (C1); henceS is a disconnected domain corresponding
to the corrugated surface punctured at the positionsui
=sr i ,fid of the defects. In the conformal plane parametrized
by the coordinateRsrd defined in Eq.(A8), the defect cores
are circles whose position-dependent radius is given by
aeVsrid. The boundaries of the “core disks” are labeled byCi
while the circular edge of the sample of radiusR is denoted
by B (see Fig. 17).

Upon introducing a “Cauchy conjugate” functionxsud de-
fined by

]aus − Aa = ga
b]bx, sC2d

the free energy in Eq.(C1) can be cast in the form
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F =
1

2
KAE

S

dA gabs]axds]bxd. sC3d

In deriving Eq.(C3) we used the identity

gmngm
agn

b = gab, sC4d

which can be proved with the aid of Eq.(B10) and the dis-
cussion following it. Equation(C4) implies that the(covari-
ant) dot product between two vectors after rotating each of
them byp /2 is equivalent to taking the dot product between
the two initial vectors. The integral in Eq.(C3) can be re-
written as

F

KA
=

1

2
E

S

dA DasxDaxd −
1

2
E

S

dA xDaDax, sC5d

where

DasxDaxd ; s1/Îgd]asÎggabx]bxd, sC6d

andDaDa is defined in Eq.(A11). Upon taking an additional
covariant derivative, we can recast Eq.(C2) in the form of a
Poisson equation for the electrostaticlike potentialxsud,

DaDaxsud = − rsud, sC7d

where the analog of the electrostatic charge densityrsud is
given by

rsud ; o
i=1

Nd

qi
dsu,uid

Îg
− Gsud. sC8d

It is useful to compare Eq.(C7) to Eq. (B2) used to define
the geometric potential in Appendix B. Both expressions are
Poisson equations, the only difference being that the source
term of Eq.(C8) includes both the pointlike charges of the
defects and the Gaussian curvature with its sign reversed.
Hence the Gauss law discussed in Appendix B for the geo-
metric fieldEa applies also to]ax, provided that Eq.(B13) is
suitably modified to include the contribution from the topo-
logical charges of the defects:

R
C

duaga
b]bx =E

A

d2ÎgSGsud − o
i=1

Nd

qi
dsu,uid

Îg
D ,

sC9d

whereC is the contour enclosing an arbitrary surfaceA. This
relation will be useful later.

We can formally solve forxsud in Eq. (C7) in terms of the
Green’s functionGsu ,u8d found in Appendix A:

xsud =E
A

dA8rsu8dGsu,u8d, sC10d

where boundary terms have been dropped using charge neu-
trality and the fact that the edge of the sample is assumed to
be far away from the defects. The integral in Eq.(C10) can
be evaluated, with the result

xsud = o
i=1

Nd

qiGsu,uid −E
A

dA8Gsu8dGsu,u8d. sC11d

Upon using Eq.(B1), we obtain

xsud = o
i=1

Nd

qiGsu,uid + Vsud. sC12d

We note that the first term is singular at positionsui but when
x is substituted in Eq.(C3) the resulting energy is finite
because the cores of the defects are excluded from the do-
main of integrationS. Upon substituting Eq.(C7) in the sec-
ond term of Eq.(C5) we obtain

E
S

dA xDaDax = −E
S

dA xrsud =E
S

dA xGsud,

sC13d

where we dropped terms involving thed functions in Eq.
(C8) because they vanish everywhere except at the coordi-
nates of the defects which are excluded from the domain of
integrationS. Upon substituting Eq.(C12) in Eq. (C13) we
obtain

−E
S

dA xDaDax = o
i=1

Nd

qiVsuid

+E dAE dA8GsudGsu,u8dGsu8d,

sC14d

where we used Eq.(B1).
To evaluate the first term in Eq.(C5), we apply the gen-

eralized Stokes formula of Eq.(B8) and convert the surface
integrals into line integrals over the boundaries:

E
S

dA DasxDaxd = o
i=1

Nd R
Ci

duaxga
bDbx −R

B

duaxga
bDbx,

sC15d

where the difference in sign between the two boundary inte-
grals in Eq.(C15) is due to the fact that the outward normals

FIG. 17. (a) Defects with fixed core sizea on a Gaussian bump
encircled by a circular boundary of radiusR denoted byB. (b) The
size of the vortex cores varies with position when plotted in the
conformal plane. One can avoid the singularities associated with the
defects cores by puncturing the conformal plane. This introduces
circular boundariesCi of varying radius at the position of each
defect in the conformal plane, reflecting corresponding constant
core radii on the Gaussian bump.
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for the pathsCi are oriented opposite to the normal forB, the
outermost boundary of the system.

To evaluate the last term in Eq.(C15), we note that the
flux through the distant boundaryB due to a charge neutral
distribution of defects is approximately zero, provided that
the integrated Gaussian curvature enclosed by the boundary
is vanishingly small[see Eq.(C9)]. Hence

xR
B

duaga
bDbx . 0, sC16d

where we used the fact thatx, defined in Eq.(C2), is ap-
proximately constant onB since ]au−Aa.0. By contrast,
the flux of ]rx piercing the boundaryCi in Eq. (C15) is
approximately equal to the chargeqi of the enclosed defect.4

In evaluating the integrals around the infinitesimal bound-
ariesCi, we used the fact that the functionxsui +ad evaluated
on the “rim” of the defect core centered atui and of radius
aeVsuid is dominated by a logarithmically diverging contribu-
tion due to theith defect. This leading contribution is ap-
proximately constant onCi. On the other hand, the nondi-
verging part ofxsui +ad is multiplied by the perimeter ofCi

and hence its contribution is of the order ofa. The result of
the integration will be insensitive to the orientation of the
vectors along the boundaryCi, provided the defect core is
small.5 In this way, we find

R
Ci

duaga
bxDbx . xsui + adR

Ci

dufgf
r]rx . qixsui + ad.

sC17d

Upon substituting Eqs.(C17) and(C16) in Eq. (C15), we
obtain

E
S

dA DasxDaxd = o
i=1

Nd

qixsui + ad

= o
i=1

Nd

qiVsuid + o
i=1

Nd

o
jÞi

Nd

qiqjGsui,u jd

+ o
i=1

Nd

qi
2Gsui,ui + ad, sC18d

where we used Eq.(C12) to substitute forx. Substitution of
Eq. (C18) and Eq.(C14) in Eq. (C5) then yields

F

KA
= F0 + o

i=1

Nd

qiS1 −
qi

4p
DVsr id − o

i=1

Nd qi
2

8p
lnsa2d

+
1

2o
i=1

Nd

o
jÞi

Nd

qiqjGsui,u jd, sC19d

where we have used Eq.(A15) to evaluateGsui ,ui +ad. The
first term in Eq. (C19) is the free energy of the smooth
defect-free texture[see Eq.(17) and preceding discussion].
The free energy differenceDF /KA between a charge neutral
defect configuration and a smooth texture thus reads

DFsad
KA

=
1

2o
i=1

Nd

o
jÞi

Nd

qiqjGasr i,fi,r j,f jd +
Ec

KA
o
i=1

Nd

qi
2

+ o
i=1

Nd

qiS1 −
qi

4p
DVsr id, sC20d

where the subscripta in the Green’s function indicates

Gasr i,fi,r j,f jd = −
1

4p
lnSRsrd2

a2 +
Rsr8d2

a2

− 2
Rsrd

a

Rsr8d
a

cossf − f8dD . sC21d

In order to absorb the core radiusa in the interdefect inter-
action, we used the elementary algebraic identity

o
i=1

Nd

qi
2 = − o

i=1

Nd

o
jÞi

Nd

qiqj , sC22d

valid for charge neutral configurations. The core energyEc in
Eq. (C20) was added by hand and represents short distance
physics on scales less than or equal to the core radius. Al-
though the second part of the last term in Eq.(C20) arises as
a position-dependent self-energy, it has the same functional
form as the geometrical potential discussed in Appendix B,
and hence depends on the global shape of the surface.

APPENDIX D: BUMP WITH A BOUNDARY

The aim of this appendix is to study the energetics of a
singular vector field on a bumpy surface of circular shape
and finite sizeR. To evaluate the ground state energy in Eq.
(C1), we first need to solve the covariant Laplace equation
for the bond-angle fieldusud in the presence ofNd defects at
positionsui. This is more easily done by switching fromusud
to the conjugate fieldxsud, as shown in Eq.(C3), and solving
the Poisson equation(C7) satisfied byx for both free and
fixed boundary conditions(see Fig. 18).

The bond-angle field satisfies free boundary conditions if
the following relation holds on the circular edgeB:

u]ruur=R = 0, sD1d

while for fixed tangential boundary conditions we have

u]fuur=R = 0. sD2d

To understand Eq.(D2), recall that we measure the bond
angleu with respect to a rotating basis vectorEr in the radial

4The integrated Gaussian curvature in the microscopic disk is van-
ishingly small.

5If the defect core is very large, it may be necessary to place
images within the defect core itself to impose a desired boundary
condition on its rim. This is not the regime considered in the present
work (see Ref.[39] for similar calculations performed in flat space).
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direction. With this convention,u is equal to a constant when
the vector order parameter is aligned with the circular bound-
ary B. We can convert Eqs.(D1) and (D2) into boundary
conditions to be satisfied by the conjugate fieldx on B. Upon
substituting Eq.(D1) in Eq. (C2) and using the fact thatAr is
equal to zero, we obtain the constraint thatxsud satisfies on
B in the case of free boundary conditions:

u]fxur=R = 0. sD3d

This corresponds to a Dirichlet problem wherexDsud evalu-
ated on the boundaryB assumes an arbitrary constant value
c:

xDsBd = c. sD4d

Upon substituting Eq.(D2) in Eq. (C2), we obtain

]rx = −
Af

gf
r , sD5d

since gf
f=0. Upon substituting Eqs.(B11) and (8) in Eq.

(D5) we obtain the boundary condition onx that corresponds
to Eq. (D2):

u]rx
Nur=R = −

1

R
, sD6d

where the superscript indicates that this is a Neumann
boundary problem with the normal derivative assuming a
constant value.

To solve the Poisson equation(C7) with Neumann or Di-
richlet boundary conditions in terms of suitable Green’s
functions we exploit a covariant version of Green’s theorem
expressed in terms of two invariant functions of positions
csud andwsud [40]:

E
S

dAfwsudDaDacsud − csudDaDawsudg

= −R
B

duaga
bfwsud]bcsud − csud]bwsudg. sD7d

By applying Eq.(D7) to wsud=xsud andcsud=Gsu ,u8d and
using Eqs.(A10) and (C7) we obtain

xsud =E
S

dA8Gsu8,udrsu8d +R
B

du8aga
bxsu8d]b8Gsu8,ud

−R
B

du8aga
bGsu8,ud]b8xsu8d, sD8d

whereu andu8 have been exchanged.6 The boundary condi-
tions for the Green’s function can be conveniently chosen to
eliminate unknown quantities in Eq.(D7) as in flat space
[41].

For the Dirichlet problem, we choose the Green’s function
GD so that it vanishes whenu8 is on the boundaryB:

GDsB,ud = 0. sD9d

Upon substituting Eq.(D9) in Eq. (D8) and noting thatxsu8d
is constant on the boundaryB [see Eq.(D4)], we obtain

xDsud =E
S

dA8GDsu8,udrsu8d

+ xDsBdR
B

du8aga
b]b8GDsu8,ud. sD10d

The contour integral in the second term of Eq.(D10) corre-
sponds to the flux piercingB which is, in turn, equal to the
(unit) charge of the singularity located atu.7 The final result
reads

xDsud =E
S

dA8rsu8dGDsu8,ud + xDsBd, sD11d

wherexDsBd can be set to zero, since the energy in Eq.(C3)
is only defined in terms of derivatives ofx. One can check
that xDsud in Eq. (D11) satisfies both the Poisson equation
(C7) and the required boundary condition in Eq.(D3). This
can be more easily proved by noting thatGDsu8 ,ud is sym-
metric under exchange of its argumentsu8 andu.8

A similar reasoning applies toxNsud. However, we cannot
choose the Green’s function so that the second term of Eq.
(D8) [which contains the unknown quantityxsu8d] vanishes.

6These manipulations are common in electromagnetism; see, for
example, Ref.[41].

7This assertion can be proved by applying Stokes theorem[as
stated in Eq.(B8) with Eb replaced by]b8Gsu8 ,ud] and using Eq.
(A10) to evaluate the surface integral.

8This assertion can be proved by applying Green’s theorem in Eq.
(D7) to csud=Gsu ,u8d and wsud=Gsu ,u9d and noticing that the
right hand side vanishes if the boundary condition in Eq.(D9) is
assumed. We can then conclude thatGDsu8 ,u9d=GDsu9 ,u8d in anal-
ogy with familiar results in 3D electrostatics[41].

FIG. 18. (a) Schematic illustration of the boundary director tex-
ture corresponding to free boundary conditions. The vector order
parameter orientation close to the edge of the sample does not vary
appreciably as one moves along the radial direction and it is parallel
to itself at every point on the boundary.(b) Tangential boundary
conditions. The vector order parameter is locally aligned to a wall
located at the edge of the sample.

DEFECT GENERATION AND DECONFINEMENT ON… PHYSICAL REVIEW E 70, 051105(2004)

051105-19



In fact, by invoking Stokes theorem[see Eq.(B8)], we note
that

R
B

du8aga
b]b8Gsu8,ud = 1, sD12d

wherega
bsu8=Bd is constant on the circular boundaryB and

can be brought out of the integral. An appropriate choice of
boundary condition onGN that satisfies the constraint in Eq.
(D12) is

]r8G
Nusr8,f8;r,fdur8=R =

1

2pga
bsRd

= −
ÎlsRd
2pR

, sD13d

where we used Eq.(B11). The a-dependent functionlsr8d
was defined in Eq.(A4). Note thatlsRd.1, for R@ r0 (see
Fig. 2). By substituting Eqs.(D13) and(D6) in Eq. (D8) we
obtain

xNsud =E
S

dA8GNsu8,udrsu8d +
1

2p
E

0

2p

df8xsR,f8d

−
1

ÎlsRd
E

0

2p

df8GNsR,f8;r,fd. sD14d

The last two integrals are constant and hence can be dropped.
We can check explicitly thatxNsud satisfies Eq.(D6) by
evaluating the radial derivative ofxNsud in Eq. (D14):

]rx
Nusr,fdur=R =E

S

dA8rsu8d]rG
NusR,f8;r,fdur=R,

sD15d

where the radial derivative of the Green’s function assumes
the constant value derived in Eq.(D13), provided that
GNsu8 ,ud is constructed so that it is symmetric under ex-
change of its argumentsu8 andu [see Eq.(D19)]. With the
aid of Eqs.(C8) and (C12), we obtain

E
S

dA8rsu8d = o
i

Nd

qi + 2pS 1
ÎlsRd

− 1D . sD16d

Upon substituting Eqs.(D16) and (D13) in Eq. (D15), we
conclude that the Neumann boundary condition in Eq.(D6)
is satisfied provided that

o
i

Nd

qi = 2p. sD17d

It is reassuring that the topological constraint on the vorticity
of the field imposed by the presence of the wall arises as a
natural requirement within this formalism. Similarly, the
Poisson equation forxNsud is automatically satisfied.

We are now left with the task of guessing the Green’s
functions for the Dirichlet and Neumann problems satisfying
the boundary conditions in Eqs.(D9) and (D13), respec-
tively. In both cases the Green’s function can be determined
by the method of images applied in the conformal plane. For
every defect with radial coordinater i we need an image de-
fect of opposite(equal) topological charge at positionr i8 to

ensure that Dirichlet’s(Neumann) boundary conditions are
enforced(see Fig. 19).

The radial coordinate of the image defectr i8 is determined
by the relation

Rsr i8d =
R2sRd
Rsr id

. sD18d

Except for the coordinate changer →Rsrd, a similar relation
arises in elementary electrostatic problems in flat space[35].
A geometric argument that justifies this choice of images in
flat space is illustrated in Fig. 20.

Once the position of the source is chosen according to Eq.
(D18), we can express the two Green’s functions with the
concise notationGD/N as follows:

FIG. 19. Schematic illustration of the method of images. The
image defect is of the same sign for free boundary conditions(a)
and opposite for fixed boundary conditions(b). Defects closer to the
center of the circle have images further away from it.

FIG. 20. A topological defect located at positionP in a circular
domain of radiusOQ in flat space. Fixed boundary conditions are
obtained by placing an image defect of the same sign at a distance
OP8 from the center such thatOP OP8=OQ2. The two triangles
DOQP and DOQP8 are similar and/OQP= /OP8Q=p−u8. By
the theorem of the external angle, we conclude thatu8+u=f+p as
long asQ lies on the circumferenceB. This is equivalent to the
boundary condition in Eq.(D2) if a nonrotating vector basis is used.
Similarly, for free boundary conditions the symmetric Green’s func-
tion is constant on the boundary if the image defect is negative.
Since PQ/P8Q=OP/OQ, the potential lnsPQd−lnsP8Qd (gener-
ated by the defect at distanceOP and its image) is constant on the
circumference of radiusOQ.
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GD/Nsu,u8d = −
1

4p
lnfRsrd2 + Rsr8d2 − 2RsrdRsr8d

3cossf − f8dg ±
1

4p
lnSRsrd2 +

RsRd4

Rsr8d2

− 2Rsrd
RsRd2

Rsr8d
cossf − f8dD ± fsr8d,

sD19d

where we have introduced a functionfsr8d to make
GD/Nsu ,u8d symmetric under exchange of its arguments and
to remove a singularity atr8=0. Note that we can addfsr8d
since the defining equation of the Green’s function does not
contain derivatives ofr8, only of r:

fsr8d =
1

2p
lnSRsr8d

RsRd
D . sD20d

The plus and minus signs in Eq.(D19) ensure that the Di-
richlet and Neumann boundary conditions, respectively, are
obeyed. In what follows the sign placed above in the sym-
bols 6 or 7 always indicates the choice suitable for the
Dirichlet problem while the one below refers to Neumann
boundary conditions. One can explicitly check by substitu-
tion that the symmetrized Green’s functionsGD/Nsu ,u8d sat-
isfy the correct boundary conditions, as long as the plus sign
is chosen whenGD is substituted in Eq.(D9) and the minus
sign whenGN is substituted in Eq.(D13). Note that, without
the extra termfsr8d in the expressions for both Green’s func-
tions,GD would not be equal to zero on the boundaryB and
the last term in Eq.(D14) would not be constant whenGN is
substituted in.

Once the Green’s function is obtained, one can readily
write down xD/Nsud by dropping the constant terms in Eqs.
(D11) and (D14):

xD/Nsud = o
i=1

Nd

qiG
D/Nsu,uid −E

S

dA8Gsu8dGD/Nsu,u8d.

sD21d

The Gaussian curvature is given by the covariant Laplacian
of the geometric potential introduced in Eq.(B2). Upon in-
tegrating by parts twice the second term in Eq.(D21) and
applying Stokes theorem repeatedly, we find

xD/Nsud = o
i=1

Nd

qiG
D/Nsu,uid + Vsud, sD22d

where we assume thatR@ r0 so that we can neglect boundary
terms. The geometric potentialVsud has the same functional
form previously discussed in Appendix B, despite the change
in the Green’s function.

The evaluation of the energy stored in the field now pro-
ceeds along the lines sketched in Appendix C with the only
caveat that one needs to choose the appropriate Green’s func-
tion in Eq. (D19). In the case of Dirichlet boundary condi-
tions one can prove that the boundary integral in Eq.(C16)

still vanishes by virtue of the fact thatx is constant on the
boundaryB and the defect configuration is charge neutral.
For the Neumann problem we have

xNR
B

duaga
bDbxN < 4p lnfRsRdg, sD23d

where we assumed thatR@ r0. In this limit RsRd is approxi-
mately equal toR, as can be checked with the aid of Eqs.
(A8) and (A9).

All the remaining intermediate steps to derive the free
energy follow as in Appendix C without further assumptions.
We can readily generalize Eq.(C20) to evaluate the energy
stored in the singular field in the presence of a boundary in
the case of both free and fixed boundary conditions. We as-
sumeR@ r0, but the defects do not need to be far away from
the boundary. The result is

FD/N

KA
=

1

2o
jÞi

Nd

qiqjG
D/Nsxi ;xjd + F0 + o

i=1

Nd

qiS1 −
qi

4p
DVsr id

+ o
i=1

Nd qi
2

4p
lnSRsRd

a
D ± o

i=1

Nd qi
2

4p
lns1 − xi

2d, sD24d

where F0 is defined in Eq.(17). The Green’s function ex-
pressed in scaled coordinates reads

GD/Nsxi ;xjd = −
1

4p
lnfxi

2 + xj
2 − 2xixj cossfi − f jdg

±
1

4p
lnfxi

2xj
2 + 1 − 2xixj cossfi − f jdg.

sD25d

In the case of Neumann boundary conditions, we have sup-
pressed a term diverging like lnfRsRdg associated with the
boundary contribution in Eq.(D23). Equation(D25) is ex-
pressed in terms of a dimensionless defect positionxi,

xi ;
Rsr id
RsRd

. sD26d

The plus sign in Eqs.(D25) and (D24) is to be chosen for
Dirichlet boundary conditions and the minus sign for Neu-
mann. The last term in Eq.(D24) represents the interaction
Ub

D/Nsxid between a single defect located atxi and the bound-
ary:

Ub
D/Nsxid = ± KAo

i=1

Nd qi
2

4p
lns1 − xi

2d. sD27d

Note that theq-dependent prefactors ofUb
D/Nsxid and the qua-

dratic correction to the curvature interaction[third term in
Eq. (D24)] have the same magnitude. This is not a coinci-
dence but a clue to their common origin. As the geometry of
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a plane is modified, by either creating a varying curvature or
imposing boundaries, the defects experience an additional
interaction caused by the conformal transformation of the
underlying space. This line of reasoning is powerful and it

has been pursued in Ref.[30] to explain some basic features
of the interaction between defects and curvature without ex-
plicit recourse to the Green’s function techniques adopted in
this work.

[1] D. R. Nelson and B. I. Halperin, Phys. Rev. B19, 2457
(1979).

[2] J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181(1973).
[3] A. P. Young, Phys. Rev. B19, 1855(1979).
[4] C. F. Chou, A. J. Jin, S. W. Hui, C. C. Huang, and J. T. Ho,

Science280, 1424(1998).
[5] C. Knobler and R. Desai, Annu. Rev. Phys. Chem.43, 207

(1992).
[6] R. Seshadri and R. M. Westervelt, Phys. Rev. Lett.66, 2774

(1991).
[7] C. C. Grimes and G. Adams, Phys. Rev. Lett.42, 795 (1979).
[8] D. C. Glattli, E. Y. Andrei, and F. I. B. Williams, Phys. Rev.

Lett. 60, 420 (1998).
[9] G. Deville, A. Valdes, E. Y. Andrei, and F. I. B. Williams,

Phys. Rev. Lett.53, 588 (1984).
[10] C. M. Murray, in Bond Orientational Order in Condensed

Matter Systems, edited by K. J. Strandburg(Springer, Berlin,
1992).

[11] K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett.82, 2721
(1999).

[12] R. A. Segalman, A. Hexemer, R. C. Hayward, and E. J.
Kramer, Macromolecules36, 3272(2003).

[13] S. Sachdev and D. R. Nelson, J. Phys. C17, 5473(1984).
[14] D. R. Nelson, Phys. Rev. B28, 5515(1983).
[15] D. R. Nelson,Defects and Geometry in Condensed Matter

Physics (Cambridge University Press, Cambridge, England,
2002).

[16] M. Bowick, D. R. Nelson, and A. Travesset, Phys. Rev. B62,
8738 (2000), and references therein.

[17] A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore, M.
F. Hsu, D. R. Nelson, M. G. Nikolaides, A. Travesset, and D.
A. Weitz, Science299, 1716(2003).

[18] F. David, E. Guitter, and L. Peliti, J. Phys.(France) 48, 2059
(1987).

[19] D. R. Nelson and L. Peliti, J. Phys.(France) 48, 1085(1987).
[20] E. Guitter and M. Kardar, Europhys. Lett.13, 441 (1990).

[21] J. M. Park and T. C. Lubensky, Phys. Rev. E53, 2648(1996).
[22] P. Lenz and D. R. Nelson, Phys. Rev. E67, 031502(2003).
[23] E. Kramer(private communication).
[24] P. G. de Gennes and J. Prost,The Physics of Liquid Crystals

(Clarendon, Oxford, 1993).
[25] M. Bowick, D. R. Nelson, and A. Travesset, Phys. Rev. E69,

041102(2004).
[26] F. David, inStatistical Mechanics of Membranes and Surfaces,

edited by D. R. Nelsonet al. (World Scientific, Singapore,
1989).

[27] D. J. Struik,Lectures on Classical Differential Geometry(Do-
ver, New York, 1961).

[28] R. Kamien, Rev. Mod. Phys.74, 953 (2002).
[29] T. C. Lubensky and J. Prost, J. Phys. II2, 371 (1992).
[30] V. Vitelli and A. M. Turner, e-print cond-mat/0406329.
[31] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov,Modern

Geometry—Methods and Applications(Springer, New York,
1992), Vol. 1.

[32] V. I. Smirnov, A Course of Higher Mathematics(Pergamon,
Oxford, 1964), Vol. 3, Part 2.

[33] A. M. Polyakov, Phys. Lett.103B, 307 (1981).
[34] M. Kleman and O. D. Lavrentovich,Soft Matter Physics

(Springer, New York, 2003).
[35] W. K. H. Panofsky and M. Phillips,Classical Electricity and

Magnetism(Addison-Wesley, Reading, MA, 1962).
[36] W. F. Vinen, inSuperconductivity, edited by R. D. Parks(De-

kker, New York, 1969), Vol. 2.
[37] G. B. Hess, Phys. Rev.161, 189 (1967).
[38] M. Spivak,A Comprehensive Introduction to Differential Ge-

ometry(Publish or Perish, Berkeley, CA, 1979).
[39] A. Budzin and D. Feinberg, Physica C235, 2755(1994).
[40] A. J. McConnell,Applications of Tensor Analysis(Dover, New

York, 1957), pp. 184–189.
[41] H. W. Wyld, Mathematical Methods for Physics(Perseus,

Reading, MA, 1999), pp. 272–276.

V. VITELLI AND D. R. NELSON PHYSICAL REVIEW E 70, 051105(2004)

051105-22


